Cargando…
Lung Lesion Localization of COVID-19 From Chest CT Image: A Novel Weakly Supervised Learning Method
Chest computed tomography (CT) image data is necessary for early diagnosis, treatment, and prognosis of Coronavirus Disease 2019 (COVID-19). Artificial intelligence has been tried to help clinicians in improving the diagnostic accuracy and working efficiency of CT. Whereas, existing supervised appro...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545179/ https://www.ncbi.nlm.nih.gov/pubmed/33739926 http://dx.doi.org/10.1109/JBHI.2021.3067465 |
Ejemplares similares
-
Weakly supervised segmentation of COVID-19 infection with local lesion coherence on CT images
por: Sun, Wanchun, et al.
Publicado: (2023) -
Weakly-Supervised Network for Detection of COVID-19 in Chest CT Scans
Publicado: (2020) -
Weakly supervised segmentation of tumor lesions in PET-CT hybrid imaging
por: Früh, Marcel, et al.
Publicado: (2021) -
Robust weakly supervised learning for COVID-19 recognition using multi-center CT images
por: Ye, Qinghao, et al.
Publicado: (2022) -
Supervised and weakly supervised deep learning models for COVID-19 CT diagnosis: A systematic review
por: Hassan, Haseeb, et al.
Publicado: (2022)