Cargando…
Leveraging Network Science for Social Distancing to Curb Pandemic Spread
COVID-19 has irreversibly upended the course of human life and compelled countries to invoke national emergencies and strict public guidelines. As the scientific community is in the early stages of rigorous clinical testing to come up with effective vaccination measures, the world is still heavily r...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545212/ https://www.ncbi.nlm.nih.gov/pubmed/34812379 http://dx.doi.org/10.1109/ACCESS.2021.3058206 |
_version_ | 1784589969433559040 |
---|---|
collection | PubMed |
description | COVID-19 has irreversibly upended the course of human life and compelled countries to invoke national emergencies and strict public guidelines. As the scientific community is in the early stages of rigorous clinical testing to come up with effective vaccination measures, the world is still heavily reliant on social distancing to curb the rapid spread and mortality rates. In this work, we present three optimization strategies to guide human mobility and restrict contact of susceptible and infective individuals. The proposed strategies rely on well-studied concepts of network science, such as clustering and homophily, as well as two different scenarios of the SEIRD epidemic model. We also propose a new metric, called contagion potential, to gauge the infectivity of individuals in a social setting. Our extensive simulation experiments show that the recommended mobility approaches slow down spread considerably when compared against several standard human mobility models. Finally, as a case study of the mobility strategies, we introduce a mobile application, MyCovid, that provides periodic location recommendations to the registered app users. |
format | Online Article Text |
id | pubmed-8545212 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | IEEE |
record_format | MEDLINE/PubMed |
spelling | pubmed-85452122021-11-18 Leveraging Network Science for Social Distancing to Curb Pandemic Spread IEEE Access Computational and Artificial Intelligence COVID-19 has irreversibly upended the course of human life and compelled countries to invoke national emergencies and strict public guidelines. As the scientific community is in the early stages of rigorous clinical testing to come up with effective vaccination measures, the world is still heavily reliant on social distancing to curb the rapid spread and mortality rates. In this work, we present three optimization strategies to guide human mobility and restrict contact of susceptible and infective individuals. The proposed strategies rely on well-studied concepts of network science, such as clustering and homophily, as well as two different scenarios of the SEIRD epidemic model. We also propose a new metric, called contagion potential, to gauge the infectivity of individuals in a social setting. Our extensive simulation experiments show that the recommended mobility approaches slow down spread considerably when compared against several standard human mobility models. Finally, as a case study of the mobility strategies, we introduce a mobile application, MyCovid, that provides periodic location recommendations to the registered app users. IEEE 2021-02-09 /pmc/articles/PMC8545212/ /pubmed/34812379 http://dx.doi.org/10.1109/ACCESS.2021.3058206 Text en This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Computational and Artificial Intelligence Leveraging Network Science for Social Distancing to Curb Pandemic Spread |
title | Leveraging Network Science for Social Distancing to Curb Pandemic Spread |
title_full | Leveraging Network Science for Social Distancing to Curb Pandemic Spread |
title_fullStr | Leveraging Network Science for Social Distancing to Curb Pandemic Spread |
title_full_unstemmed | Leveraging Network Science for Social Distancing to Curb Pandemic Spread |
title_short | Leveraging Network Science for Social Distancing to Curb Pandemic Spread |
title_sort | leveraging network science for social distancing to curb pandemic spread |
topic | Computational and Artificial Intelligence |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545212/ https://www.ncbi.nlm.nih.gov/pubmed/34812379 http://dx.doi.org/10.1109/ACCESS.2021.3058206 |
work_keys_str_mv | AT leveragingnetworkscienceforsocialdistancingtocurbpandemicspread AT leveragingnetworkscienceforsocialdistancingtocurbpandemicspread AT leveragingnetworkscienceforsocialdistancingtocurbpandemicspread AT leveragingnetworkscienceforsocialdistancingtocurbpandemicspread AT leveragingnetworkscienceforsocialdistancingtocurbpandemicspread |