Cargando…

Deep Learning for SARS COV-2 Genome Sequences

The SARS-CoV-2 virus which originated in Wuhan, China has since spread throughout the world and is affecting millions of people. When there is a novel virus outbreak, it is crucial to quickly determine if the epidemic is a result of the novel virus or a well-known virus. We propose a deep learning a...

Descripción completa

Detalles Bibliográficos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IEEE 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545213/
https://www.ncbi.nlm.nih.gov/pubmed/34812391
http://dx.doi.org/10.1109/ACCESS.2021.3073728
_version_ 1784589969675780096
collection PubMed
description The SARS-CoV-2 virus which originated in Wuhan, China has since spread throughout the world and is affecting millions of people. When there is a novel virus outbreak, it is crucial to quickly determine if the epidemic is a result of the novel virus or a well-known virus. We propose a deep learning algorithm that uses a convolutional neural network (CNN) as well as a bi-directional long short-term memory (Bi-LSTM) neural network, for the classification of the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) amongst Coronaviruses. Besides, we classify whether a genome sequence contains candidate regulatory motifs or otherwise. Regulatory motifs bind to transcription factors. Transcription factors are responsible for the expression of genes. The experimental results show that at peak performance, the proposed convolutional neural network bi-directional long short-term memory (CNN-Bi-LSTM) model achieves a classification accuracy of 99.95%, area under curve receiver operating characteristic (AUC ROC) of 100.00%, a specificity of 99.97%, the sensitivity of 99.97%, Cohen’s Kappa equal to 0.9978, Mathews Correlation Coefficient (MCC) equal to 0.9978 for the classification of SARS CoV-2 amongst Coronaviruses. Also, the CNN-Bi-LSTM correctly detects whether a sequence has candidate regulatory motifs or binding-sites with a classification accuracy of 99.76%, AUC ROC of 100.00%, a specificity of 99.76%, a sensitivity of 99.76%, MCC equal to 0.9980, and Cohen’s Kappa of 0.9970 at peak performance. These results are encouraging enough to recognise deep learning algorithms as alternative avenues for detecting SARS CoV-2 as well as detecting regulatory motifs in the SARS CoV-2 genes.
format Online
Article
Text
id pubmed-8545213
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher IEEE
record_format MEDLINE/PubMed
spelling pubmed-85452132021-11-18 Deep Learning for SARS COV-2 Genome Sequences IEEE Access Computational and artificial intelligence The SARS-CoV-2 virus which originated in Wuhan, China has since spread throughout the world and is affecting millions of people. When there is a novel virus outbreak, it is crucial to quickly determine if the epidemic is a result of the novel virus or a well-known virus. We propose a deep learning algorithm that uses a convolutional neural network (CNN) as well as a bi-directional long short-term memory (Bi-LSTM) neural network, for the classification of the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) amongst Coronaviruses. Besides, we classify whether a genome sequence contains candidate regulatory motifs or otherwise. Regulatory motifs bind to transcription factors. Transcription factors are responsible for the expression of genes. The experimental results show that at peak performance, the proposed convolutional neural network bi-directional long short-term memory (CNN-Bi-LSTM) model achieves a classification accuracy of 99.95%, area under curve receiver operating characteristic (AUC ROC) of 100.00%, a specificity of 99.97%, the sensitivity of 99.97%, Cohen’s Kappa equal to 0.9978, Mathews Correlation Coefficient (MCC) equal to 0.9978 for the classification of SARS CoV-2 amongst Coronaviruses. Also, the CNN-Bi-LSTM correctly detects whether a sequence has candidate regulatory motifs or binding-sites with a classification accuracy of 99.76%, AUC ROC of 100.00%, a specificity of 99.76%, a sensitivity of 99.76%, MCC equal to 0.9980, and Cohen’s Kappa of 0.9970 at peak performance. These results are encouraging enough to recognise deep learning algorithms as alternative avenues for detecting SARS CoV-2 as well as detecting regulatory motifs in the SARS CoV-2 genes. IEEE 2021-04-16 /pmc/articles/PMC8545213/ /pubmed/34812391 http://dx.doi.org/10.1109/ACCESS.2021.3073728 Text en This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
spellingShingle Computational and artificial intelligence
Deep Learning for SARS COV-2 Genome Sequences
title Deep Learning for SARS COV-2 Genome Sequences
title_full Deep Learning for SARS COV-2 Genome Sequences
title_fullStr Deep Learning for SARS COV-2 Genome Sequences
title_full_unstemmed Deep Learning for SARS COV-2 Genome Sequences
title_short Deep Learning for SARS COV-2 Genome Sequences
title_sort deep learning for sars cov-2 genome sequences
topic Computational and artificial intelligence
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545213/
https://www.ncbi.nlm.nih.gov/pubmed/34812391
http://dx.doi.org/10.1109/ACCESS.2021.3073728
work_keys_str_mv AT deeplearningforsarscov2genomesequences
AT deeplearningforsarscov2genomesequences