Cargando…
DeepH-DTA: Deep Learning for Predicting Drug-Target Interactions: A Case Study of COVID-19 Drug Repurposing
The rapid spread of novel coronavirus pneumonia (COVID-19) has led to a dramatically increased mortality rate worldwide. Despite many efforts, the rapid development of an effective vaccine for this novel virus will take considerable time and relies on the identification of drug-target (DT) interacti...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545313/ https://www.ncbi.nlm.nih.gov/pubmed/34786289 http://dx.doi.org/10.1109/ACCESS.2020.3024238 |
Ejemplares similares
-
DeepDTA: deep drug–target binding affinity prediction
por: Öztürk, Hakime, et al.
Publicado: (2018) -
DeepCarc: Deep Learning-Powered Carcinogenicity Prediction Using Model-Level Representation
por: Li, Ting, et al.
Publicado: (2021) -
Corrigendum: DeepCarc: Deep learning-powered carcinogenicity prediction using model-level representation
por: Li, Ting, et al.
Publicado: (2022) -
Development and evaluation of a java-based deep neural network method for drug response predictions
por: Huang, Beibei, et al.
Publicado: (2023) -
Prediction of COVID-19 Using Genetic Deep Learning Convolutional Neural Network (GDCNN)
Publicado: (2020)