Cargando…
Bayesian neural network with pretrained protein embedding enhances prediction accuracy of drug-protein interaction
MOTIVATION: Characterizing drug–protein interactions (DPIs) is crucial to the high-throughput screening for drug discovery. The deep learning-based approaches have attracted attention because they can predict DPIs without human trial and error. However, because data labeling requires significant res...
Autores principales: | Kim, QHwan, Ko, Joon-Hyuk, Kim, Sunghoon, Park, Nojun, Jhe, Wonho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545317/ https://www.ncbi.nlm.nih.gov/pubmed/33978713 http://dx.doi.org/10.1093/bioinformatics/btab346 |
Ejemplares similares
-
AptaTrans: a deep neural network for predicting aptamer-protein interaction using pretrained encoders
por: Shin, Incheol, et al.
Publicado: (2023) -
Document Network Projection in Pretrained Word Embedding Space
por: Gourru, Antoine, et al.
Publicado: (2020) -
PMF-CPI: assessing drug selectivity with a pretrained multi-functional model for compound–protein interactions
por: Song, Nan, et al.
Publicado: (2023) -
Pretrained Transformer Language Models Versus Pretrained Word Embeddings for the Detection of Accurate Health Information on Arabic Social Media: Comparative Study
por: Albalawi, Yahya, et al.
Publicado: (2022) -
To pretrain or not? A systematic analysis of the benefits of pretraining in diabetic retinopathy
por: Srinivasan, Vignesh, et al.
Publicado: (2022)