Cargando…
AMICI: high-performance sensitivity analysis for large ordinary differential equation models
SUMMARY: Ordinary differential equation models facilitate the understanding of cellular signal transduction and other biological processes. However, for large and comprehensive models, the computational cost of simulating or calibrating can be limiting. AMICI is a modular toolbox implemented in C++/...
Autores principales: | Fröhlich, Fabian, Weindl, Daniel, Schälte, Yannik, Pathirana, Dilan, Paszkowski, Łukasz, Lines, Glenn Terje, Stapor, Paul, Hasenauer, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545331/ https://www.ncbi.nlm.nih.gov/pubmed/33821950 http://dx.doi.org/10.1093/bioinformatics/btab227 |
Ejemplares similares
-
Efficient computation of adjoint sensitivities at steady-state in ODE models of biochemical reaction networks
por: Lakrisenko, Polina, et al.
Publicado: (2023) -
pyPESTO: a modular and scalable tool for parameter estimation for dynamic models
por: Schälte, Yannik, et al.
Publicado: (2023) -
PESTO: Parameter EStimation TOolbox
por: Stapor, Paul, et al.
Publicado: (2018) -
Efficient parameterization of large-scale dynamic models based on relative measurements
por: Schmiester, Leonard, et al.
Publicado: (2019) -
Mini-batch optimization enables training of ODE models on large-scale datasets
por: Stapor, Paul, et al.
Publicado: (2022)