Cargando…
Capturing dynamic relevance in Boolean networks using graph theoretical measures
MOTIVATION: Interaction graphs are able to describe regulatory dependencies between compounds without capturing dynamics. In contrast, mathematical models that are based on interaction graphs allow to investigate the dynamics of biological systems. However, since dynamic complexity of these models g...
Autores principales: | Weidner, Felix M, Schwab, Julian D, Werle, Silke D, Ikonomi, Nensi, Lausser, Ludwig, Kestler, Hans A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545349/ https://www.ncbi.nlm.nih.gov/pubmed/33983406 http://dx.doi.org/10.1093/bioinformatics/btab277 |
Ejemplares similares
-
Response to the letter to the editor: On the feasibility of dynamical analysis of network models of biochemical regulation
por: Weidner, Felix M, et al.
Publicado: (2022) -
Reconstructing Boolean network ensembles from single-cell data for unraveling dynamics in the aging of human hematopoietic stem cells
por: Schwab, Julian D., et al.
Publicado: (2021) -
CANTATA—prediction of missing links in Boolean networks using genetic programming
por: Müssel, Christoph, et al.
Publicado: (2022) -
Concepts in Boolean network modeling: What do they all mean?
por: Schwab, Julian D., et al.
Publicado: (2020) -
A systems biology approach to define mechanisms, phenotypes, and drivers in PanNETs with a personalized perspective
por: Werle, Silke D., et al.
Publicado: (2023)