Cargando…
Evaluation of categorical matrix completion algorithms: toward improved active learning for drug discovery
MOTIVATION: High throughput and high content screening are extensively used to determine the effect of small molecule compounds and other potential therapeutics upon particular targets as part of the early drug development process. However, screening is typically used to find compounds that have a d...
Autores principales: | Sun, Huangqingbo, Murphy, Robert F |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545350/ https://www.ncbi.nlm.nih.gov/pubmed/33983377 http://dx.doi.org/10.1093/bioinformatics/btab322 |
Ejemplares similares
-
Improving and evaluating deep learning models of cellular organization
por: Sun, Huangqingbo, et al.
Publicado: (2022) -
A decision-theoretic approach to the evaluation of machine learning algorithms in computational drug discovery
por: Watson, Oliver P, et al.
Publicado: (2019) -
Genome-wide genetic heterogeneity discovery with categorical covariates
por: Llinares-López, Felipe, et al.
Publicado: (2017) -
Prediction for chronic kidney disease by categorical and non_categorical attributes using different machine learning algorithms
por: Pal, Saurabh
Publicado: (2023) -
A MEDLINE categorization algorithm
por: Darmoni, Stefan J, et al.
Publicado: (2006)