Cargando…
Timing outweighs magnitude of rainfall in shaping population dynamics of a small mammal species in steppe grassland
Climate change–induced shifts in species phenology differ widely across trophic levels, which may lead to consumer–resource mismatches with cascading population and ecosystem consequences. Here, we examined the effects of different rainfall patterns (i.e., timing and amount) on the phenological asyn...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545474/ https://www.ncbi.nlm.nih.gov/pubmed/34649988 http://dx.doi.org/10.1073/pnas.2023691118 |
Sumario: | Climate change–induced shifts in species phenology differ widely across trophic levels, which may lead to consumer–resource mismatches with cascading population and ecosystem consequences. Here, we examined the effects of different rainfall patterns (i.e., timing and amount) on the phenological asynchrony of population of a generalist herbivore and their food sources in semiarid steppe grassland in Inner Mongolia. We conducted a 10-y (2010 to 2019) rainfall manipulation experiment in 12 0.48-ha field enclosures and found that moderate rainfall increases during the early rather than late growing season advanced the timing of peak reproduction and drove marked increases in population size through increasing the biomass of preferred plant species. By contrast, greatly increased rainfall produced no further increases in vole population growth due to the potential negative effect of the flooding of burrows. The increases in vole population size were more coupled with increased reproduction of overwintered voles and increased body mass of young-of-year than with better survival. Our results provide experimental evidence for the fitness consequences of phenological mismatches at the population level and highlight the importance of rainfall timing on the population dynamics of small herbivores in the steppe grassland environment. |
---|