Cargando…

Analysing a Novel RNA-Binding-Protein-Related Prognostic Signature Highly Expressed in Breast Cancer

BACKGROUND: Breast cancer (BRCA) is one of the most common cancers and the leading cause of cancer-related death in women. RNA-binding proteins (RBPs) play an important role in the emergence and pathogenesis of tumors. The target RNAs of RBPs are very diverse; in addition to binding to mRNA, RBPs al...

Descripción completa

Detalles Bibliográficos
Autores principales: Lan, Yunyun, Su, Juan, Xue, Yaxin, Zeng, Lulu, Cheng, Xun, Zeng, Liyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545572/
https://www.ncbi.nlm.nih.gov/pubmed/34707800
http://dx.doi.org/10.1155/2021/9174055
_version_ 1784590027816173568
author Lan, Yunyun
Su, Juan
Xue, Yaxin
Zeng, Lulu
Cheng, Xun
Zeng, Liyi
author_facet Lan, Yunyun
Su, Juan
Xue, Yaxin
Zeng, Lulu
Cheng, Xun
Zeng, Liyi
author_sort Lan, Yunyun
collection PubMed
description BACKGROUND: Breast cancer (BRCA) is one of the most common cancers and the leading cause of cancer-related death in women. RNA-binding proteins (RBPs) play an important role in the emergence and pathogenesis of tumors. The target RNAs of RBPs are very diverse; in addition to binding to mRNA, RBPs also bind to noncoding RNA. Noncoding RNA can cause secondary structures that can bind to RBPs and regulate multiple processes such as splicing, RNA modification, protein localization, and chromosomes remodeling, which can lead to tumor initiation, progression, and invasion. METHODS: (1) BRCA data were downloaded from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) databases and were used as training and testing datasets, respectively. (2) The prognostic RBPs-related genes were screened according to the overlapping differentially expressed genes (DEGs) from the TCGA database. (3) Univariate Cox proportional hazard regression was performed to identify the genes with significant prognostic value. (4) Further, we used the LASSO regression to construct a prognostic signature and validated the signature in the TCGA and ICGC cohort. (5) Besides, we also performed prognostic analysis, expression level verification, immune cell correlation analysis, and drug correlation analysis of the genes in the model. RESULTS: Four genes (MRPL13, IGF2BP1, BRCA1, and MAEL) were identified as prognostic gene signatures. The prognostic model has been validated in the TCGA and ICGC cohorts. The risk score calculated with four genes signatures could largely predict overall survival for 1, 3, and 5 years in patients with BRCA. The calibration plot demonstrated outstanding consistency between the prediction and actual observation. The findings of online database verification revealed that these four genes were significantly highly expressed in tumors. Also, we observed their significant correlations with some immune cells and also potential correlations with some drugs. CONCLUSION: We constructed a 4-RBPs-based prognostic signature to predict the prognosis of BRCA patients, and it has the potential for treating and diagnosing BRCA.
format Online
Article
Text
id pubmed-8545572
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-85455722021-10-26 Analysing a Novel RNA-Binding-Protein-Related Prognostic Signature Highly Expressed in Breast Cancer Lan, Yunyun Su, Juan Xue, Yaxin Zeng, Lulu Cheng, Xun Zeng, Liyi J Healthc Eng Research Article BACKGROUND: Breast cancer (BRCA) is one of the most common cancers and the leading cause of cancer-related death in women. RNA-binding proteins (RBPs) play an important role in the emergence and pathogenesis of tumors. The target RNAs of RBPs are very diverse; in addition to binding to mRNA, RBPs also bind to noncoding RNA. Noncoding RNA can cause secondary structures that can bind to RBPs and regulate multiple processes such as splicing, RNA modification, protein localization, and chromosomes remodeling, which can lead to tumor initiation, progression, and invasion. METHODS: (1) BRCA data were downloaded from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) databases and were used as training and testing datasets, respectively. (2) The prognostic RBPs-related genes were screened according to the overlapping differentially expressed genes (DEGs) from the TCGA database. (3) Univariate Cox proportional hazard regression was performed to identify the genes with significant prognostic value. (4) Further, we used the LASSO regression to construct a prognostic signature and validated the signature in the TCGA and ICGC cohort. (5) Besides, we also performed prognostic analysis, expression level verification, immune cell correlation analysis, and drug correlation analysis of the genes in the model. RESULTS: Four genes (MRPL13, IGF2BP1, BRCA1, and MAEL) were identified as prognostic gene signatures. The prognostic model has been validated in the TCGA and ICGC cohorts. The risk score calculated with four genes signatures could largely predict overall survival for 1, 3, and 5 years in patients with BRCA. The calibration plot demonstrated outstanding consistency between the prediction and actual observation. The findings of online database verification revealed that these four genes were significantly highly expressed in tumors. Also, we observed their significant correlations with some immune cells and also potential correlations with some drugs. CONCLUSION: We constructed a 4-RBPs-based prognostic signature to predict the prognosis of BRCA patients, and it has the potential for treating and diagnosing BRCA. Hindawi 2021-10-18 /pmc/articles/PMC8545572/ /pubmed/34707800 http://dx.doi.org/10.1155/2021/9174055 Text en Copyright © 2021 Yunyun Lan et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Lan, Yunyun
Su, Juan
Xue, Yaxin
Zeng, Lulu
Cheng, Xun
Zeng, Liyi
Analysing a Novel RNA-Binding-Protein-Related Prognostic Signature Highly Expressed in Breast Cancer
title Analysing a Novel RNA-Binding-Protein-Related Prognostic Signature Highly Expressed in Breast Cancer
title_full Analysing a Novel RNA-Binding-Protein-Related Prognostic Signature Highly Expressed in Breast Cancer
title_fullStr Analysing a Novel RNA-Binding-Protein-Related Prognostic Signature Highly Expressed in Breast Cancer
title_full_unstemmed Analysing a Novel RNA-Binding-Protein-Related Prognostic Signature Highly Expressed in Breast Cancer
title_short Analysing a Novel RNA-Binding-Protein-Related Prognostic Signature Highly Expressed in Breast Cancer
title_sort analysing a novel rna-binding-protein-related prognostic signature highly expressed in breast cancer
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545572/
https://www.ncbi.nlm.nih.gov/pubmed/34707800
http://dx.doi.org/10.1155/2021/9174055
work_keys_str_mv AT lanyunyun analysinganovelrnabindingproteinrelatedprognosticsignaturehighlyexpressedinbreastcancer
AT sujuan analysinganovelrnabindingproteinrelatedprognosticsignaturehighlyexpressedinbreastcancer
AT xueyaxin analysinganovelrnabindingproteinrelatedprognosticsignaturehighlyexpressedinbreastcancer
AT zenglulu analysinganovelrnabindingproteinrelatedprognosticsignaturehighlyexpressedinbreastcancer
AT chengxun analysinganovelrnabindingproteinrelatedprognosticsignaturehighlyexpressedinbreastcancer
AT zengliyi analysinganovelrnabindingproteinrelatedprognosticsignaturehighlyexpressedinbreastcancer