Cargando…
Harnack’s inequality for doubly nonlinear equations of slow diffusion type
In this article we prove a Harnack inequality for non-negative weak solutions to doubly nonlinear parabolic equations of the form [Formula: see text] where the vector field [Formula: see text] fulfills p-ellipticity and growth conditions. We treat the slow diffusion case in its full range, i.e. all...
Autores principales: | Bögelein, Verena, Heran, Andreas, Schätzler, Leah, Singer, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545765/ https://www.ncbi.nlm.nih.gov/pubmed/34720445 http://dx.doi.org/10.1007/s00526-021-02044-z |
Ejemplares similares
-
Harnack's Inequality for Degenerate and Singular Parabolic Equations
por: DiBenedetto, Emmanuele, et al.
Publicado: (2012) -
Harnack inequalities for stochastic partial differential equations
por: Wang, Feng-Yu
Publicado: (2013) -
Higher integrability for doubly nonlinear parabolic systems
por: Bögelein, Verena, et al.
Publicado: (2022) -
Entire solutions for a reaction–diffusion equation with doubly degenerate nonlinearity
por: Yan, Rui, et al.
Publicado: (2018) -
Existence of solutions to a diffusive shallow medium equation
por: Bögelein, Verena, et al.
Publicado: (2020)