Cargando…
Upper-Limb Electromyogram Classification of Reaching-to-Grasping Tasks Based on Convolutional Neural Networks for Control of a Prosthetic Hand
In recent years, myoelectric interfaces using surface electromyogram (EMG) signals have been developed for assisting people with physical disabilities. Especially, in the myoelectric interfaces for robotic hands or arms, decoding the user’s upper-limb movement intentions is cardinal to properly cont...
Autores principales: | Kim, Keun-Tae, Park, Sangsoo, Lim, Tae-Hyun, Lee, Song Joo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545895/ https://www.ncbi.nlm.nih.gov/pubmed/34712114 http://dx.doi.org/10.3389/fnins.2021.733359 |
Ejemplares similares
-
Evaluation of feature projection techniques in object grasp classification using electromyogram signals from different limb positions
por: Thiamchoo, Nantarika, et al.
Publicado: (2022) -
Odor Modulates Hand Movements in a Reach-to-Grasp Task
por: Yang, Yang, et al.
Publicado: (2020) -
Are reaching and grasping effector-independent? Similarities and differences in reaching and grasping kinematics between the hand and foot
por: Liu, Yuqi, et al.
Publicado: (2022) -
Phase-Based Grasp Classification for Prosthetic Hand Control Using sEMG
por: Wang, Shuo, et al.
Publicado: (2022) -
Classification of deep vein thrombosis stages using convolutional neural network of electromyogram with vibrotactile stimulation toward developing an early diagnostic tool: A preliminary study on a pig model
por: Kang, Jong Woo, et al.
Publicado: (2023)