Cargando…
A novel method for causal structure discovery from EHR data and its application to type-2 diabetes mellitus
Modern AI-based clinical decision support models owe their success in part to the very large number of predictors they use. Safe and robust decision support, especially for intervention planning, requires causal, not associative, relationships. Traditional methods of causal discovery, clinical trial...
Autores principales: | Shen, Xinpeng, Ma, Sisi, Vemuri, Prashanthi, Castro, M. Regina, Caraballo, Pedro J., Simon, Gyorgy J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546093/ https://www.ncbi.nlm.nih.gov/pubmed/34697394 http://dx.doi.org/10.1038/s41598-021-99990-7 |
Ejemplares similares
-
Challenges and Opportunities with Causal Discovery Algorithms: Application to Alzheimer’s Pathophysiology
por: Shen, Xinpeng, et al.
Publicado: (2020) -
Evaluating the Impact of Data Representation on EHR-Based Analytic Tasks
por: Oh, Wonsuk, et al.
Publicado: (2019) -
Causal structure discovery identifies risk factors and early brain markers related to evolution of white matter hyperintensities
por: Shen, Xinpeng, et al.
Publicado: (2022) -
An Evaluation of Active Learning Causal Discovery Methods for Reverse-Engineering Local Causal Pathways of Gene Regulation
por: Ma, Sisi, et al.
Publicado: (2016) -
Mental health progress requires causal diagnostic nosology and scalable causal discovery
por: Saxe, Glenn N., et al.
Publicado: (2022)