Cargando…
Use of Artificial Intelligence-Based Software as Medical Devices for Chest Radiography: A Position Paper from the Korean Society of Thoracic Radiology
Autores principales: | Hwang, Eui Jin, Goo, Jin Mo, Yoon, Soon Ho, Beck, Kyongmin Sarah, Seo, Joon Beom, Choi, Byoung Wook, Chung, Myung Jin, Park, Chang Min, Jin, Kwang Nam, Lee, Sang Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Radiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546139/ https://www.ncbi.nlm.nih.gov/pubmed/34564966 http://dx.doi.org/10.3348/kjr.2021.0544 |
Ejemplares similares
-
Practice Pattern of Transthoracic Needle Biopsy: 2016 Survey in the Members of Korean Society of Thoracic Radiology
por: Jo, Yeseul, et al.
Publicado: (2017) -
The Potential Role of Grid-Like Software in Bedside Chest Radiography in Improving Image Quality and Dose Reduction: An Observer Preference Study
por: Ahn, Su Yeon, et al.
Publicado: (2018) -
Chest Radiography of Tuberculosis: Determination of Activity Using Deep Learning Algorithm
por: Choi, Ye Ra, et al.
Publicado: (2023) -
Clinical Implementation of Deep Learning in Thoracic Radiology: Potential Applications and Challenges
por: Hwang, Eui Jin, et al.
Publicado: (2020) -
Application of Deconvolution Algorithm of Point Spread Function in Improving Image Quality: An Observer Preference Study on Chest Radiography
por: Chae, Kum Ju, et al.
Publicado: (2018)