Cargando…
Fully Automatic Coronary Calcium Score Software Empowered by Artificial Intelligence Technology: Validation Study Using Three CT Cohorts
OBJECTIVE: This study aimed to validate a deep learning-based fully automatic calcium scoring (coronary artery calcium [CAC]_auto) system using previously published cardiac computed tomography (CT) cohort data with the manually segmented coronary calcium scoring (CAC_hand) system as the reference st...
Autores principales: | Lee, June-Goo, Kim, HeeSoo, Kang, Heejun, Koo, Hyun Jung, Kang, Joon-Won, Kim, Young-Hak, Yang, Dong Hyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Radiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546141/ https://www.ncbi.nlm.nih.gov/pubmed/34402248 http://dx.doi.org/10.3348/kjr.2021.0148 |
Ejemplares similares
-
Automated Segmentation of Left Ventricular Myocardium on Cardiac Computed Tomography Using Deep Learning
por: Koo, Hyun Jung, et al.
Publicado: (2020) -
A Fully Automatic Estimation of Tear Meniscus Height Using Artificial Intelligence
por: Wang, Shaopan, et al.
Publicado: (2023) -
Artificial Intelligence-Enabled ECG Algorithm for the Prediction of Coronary Artery Calcification
por: Han, Changho, et al.
Publicado: (2022) -
Application of Artificial Intelligence to Cardiovascular Computed Tomography
por: Yang, Dong Hyun
Publicado: (2021) -
Empowering political participation through artificial intelligence
por: Savaget, Paulo, et al.
Publicado: (2018)