Cargando…

Brain Cortical Activation during Imagining of the Wrist Movement Using Functional Near-Infrared Spectroscopy (fNIRS)

BACKGROUND: fNIRS is a useful tool designed to record the changes in the density of blood’s oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) molecules during brain activity. This method has made it possible to evaluate the hemodynamic changes of the brain during neuronal activity...

Descripción completa

Detalles Bibliográficos
Autores principales: Jalalvandi, Maziar, Riyahi Alam, Nader, Sharini, Hamid, Hashemi, Hasan, Nadimi, Mohadeseh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shiraz University of Medical Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546162/
https://www.ncbi.nlm.nih.gov/pubmed/34722403
http://dx.doi.org/10.31661/jbpe.v0i0.1051
_version_ 1784590134207840256
author Jalalvandi, Maziar
Riyahi Alam, Nader
Sharini, Hamid
Hashemi, Hasan
Nadimi, Mohadeseh
author_facet Jalalvandi, Maziar
Riyahi Alam, Nader
Sharini, Hamid
Hashemi, Hasan
Nadimi, Mohadeseh
author_sort Jalalvandi, Maziar
collection PubMed
description BACKGROUND: fNIRS is a useful tool designed to record the changes in the density of blood’s oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) molecules during brain activity. This method has made it possible to evaluate the hemodynamic changes of the brain during neuronal activity in a completely non-aggressive manner. OBJECTIVE: The present study has been designed to investigate and evaluate the brain cortex activities during imagining of the execution of wrist motor tasks by comparing fMRI and fNIRS imaging methods. MATERIAL AND METHODS: This novel observational Optical Imaging study aims to investigate the brain motor cortex activity during imagining of the right wrist motor tasks in vertical and horizontal directions. To perform the study, ten healthy young right-handed volunteers were asked to think about right-hand movements in different directions according to the designed movement patterns. The required data were collected in two wavelengths, including 845 and 763 nanometers using a 48 channeled fNIRS machine. RESULTS: Analysis of the obtained data showed the brain activity patterns during imagining of the execution of a movement are formed in various points of the motor cortex in terms of location. Moreover, depending on the direction of the movement, activity plans have distinguishable patterns. The results showed contralateral M1 was mainly activated during imagining of the motor cortex (p<0.05). CONCLUSION: The results of our study showed that in brain imaging, it is possible to distinguish between patterns of activities during wrist motion in different directions using the recorded signals obtained through near-infrared Spectroscopy. The findings of this study can be useful in further studies related to movement control and BCI.
format Online
Article
Text
id pubmed-8546162
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Shiraz University of Medical Sciences
record_format MEDLINE/PubMed
spelling pubmed-85461622021-10-29 Brain Cortical Activation during Imagining of the Wrist Movement Using Functional Near-Infrared Spectroscopy (fNIRS) Jalalvandi, Maziar Riyahi Alam, Nader Sharini, Hamid Hashemi, Hasan Nadimi, Mohadeseh J Biomed Phys Eng Original Article BACKGROUND: fNIRS is a useful tool designed to record the changes in the density of blood’s oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) molecules during brain activity. This method has made it possible to evaluate the hemodynamic changes of the brain during neuronal activity in a completely non-aggressive manner. OBJECTIVE: The present study has been designed to investigate and evaluate the brain cortex activities during imagining of the execution of wrist motor tasks by comparing fMRI and fNIRS imaging methods. MATERIAL AND METHODS: This novel observational Optical Imaging study aims to investigate the brain motor cortex activity during imagining of the right wrist motor tasks in vertical and horizontal directions. To perform the study, ten healthy young right-handed volunteers were asked to think about right-hand movements in different directions according to the designed movement patterns. The required data were collected in two wavelengths, including 845 and 763 nanometers using a 48 channeled fNIRS machine. RESULTS: Analysis of the obtained data showed the brain activity patterns during imagining of the execution of a movement are formed in various points of the motor cortex in terms of location. Moreover, depending on the direction of the movement, activity plans have distinguishable patterns. The results showed contralateral M1 was mainly activated during imagining of the motor cortex (p<0.05). CONCLUSION: The results of our study showed that in brain imaging, it is possible to distinguish between patterns of activities during wrist motion in different directions using the recorded signals obtained through near-infrared Spectroscopy. The findings of this study can be useful in further studies related to movement control and BCI. Shiraz University of Medical Sciences 2021-10-01 /pmc/articles/PMC8546162/ /pubmed/34722403 http://dx.doi.org/10.31661/jbpe.v0i0.1051 Text en Copyright: © Journal of Biomedical Physics and Engineering https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 Unported License, ( http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Jalalvandi, Maziar
Riyahi Alam, Nader
Sharini, Hamid
Hashemi, Hasan
Nadimi, Mohadeseh
Brain Cortical Activation during Imagining of the Wrist Movement Using Functional Near-Infrared Spectroscopy (fNIRS)
title Brain Cortical Activation during Imagining of the Wrist Movement Using Functional Near-Infrared Spectroscopy (fNIRS)
title_full Brain Cortical Activation during Imagining of the Wrist Movement Using Functional Near-Infrared Spectroscopy (fNIRS)
title_fullStr Brain Cortical Activation during Imagining of the Wrist Movement Using Functional Near-Infrared Spectroscopy (fNIRS)
title_full_unstemmed Brain Cortical Activation during Imagining of the Wrist Movement Using Functional Near-Infrared Spectroscopy (fNIRS)
title_short Brain Cortical Activation during Imagining of the Wrist Movement Using Functional Near-Infrared Spectroscopy (fNIRS)
title_sort brain cortical activation during imagining of the wrist movement using functional near-infrared spectroscopy (fnirs)
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546162/
https://www.ncbi.nlm.nih.gov/pubmed/34722403
http://dx.doi.org/10.31661/jbpe.v0i0.1051
work_keys_str_mv AT jalalvandimaziar braincorticalactivationduringimaginingofthewristmovementusingfunctionalnearinfraredspectroscopyfnirs
AT riyahialamnader braincorticalactivationduringimaginingofthewristmovementusingfunctionalnearinfraredspectroscopyfnirs
AT sharinihamid braincorticalactivationduringimaginingofthewristmovementusingfunctionalnearinfraredspectroscopyfnirs
AT hashemihasan braincorticalactivationduringimaginingofthewristmovementusingfunctionalnearinfraredspectroscopyfnirs
AT nadimimohadeseh braincorticalactivationduringimaginingofthewristmovementusingfunctionalnearinfraredspectroscopyfnirs