Cargando…
Topological Dissection of Proteomic Changes Linked to the Limbic Stage of Alzheimer’s Disease
Alzheimer’s disease (AD) is a neurodegenerative disorder and the most common cause of dementia worldwide. In AD, neurodegeneration spreads throughout different areas of the central nervous system (CNS) in a gradual and predictable pattern, causing progressive memory decline and cognitive impairment....
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546208/ https://www.ncbi.nlm.nih.gov/pubmed/34712240 http://dx.doi.org/10.3389/fimmu.2021.750665 |
_version_ | 1784590145329037312 |
---|---|
author | Velásquez, Erika Szeitz, Beáta Gil, Jeovanis Rodriguez, Jimmy Palkovits, Miklós Renner, Éva Hortobágyi, Tibor Döme, Péter Nogueira, Fábio CS. Marko-Varga, György Domont, Gilberto B. Rezeli, Melinda |
author_facet | Velásquez, Erika Szeitz, Beáta Gil, Jeovanis Rodriguez, Jimmy Palkovits, Miklós Renner, Éva Hortobágyi, Tibor Döme, Péter Nogueira, Fábio CS. Marko-Varga, György Domont, Gilberto B. Rezeli, Melinda |
author_sort | Velásquez, Erika |
collection | PubMed |
description | Alzheimer’s disease (AD) is a neurodegenerative disorder and the most common cause of dementia worldwide. In AD, neurodegeneration spreads throughout different areas of the central nervous system (CNS) in a gradual and predictable pattern, causing progressive memory decline and cognitive impairment. Deposition of neurofibrillary tangles (NFTs) in specific CNS regions correlates with the severity of AD and constitutes the basis for disease classification into different Braak stages (I-VI). Early clinical symptoms are typically associated with stages III-IV (i.e., limbic stages) when the involvement of the hippocampus begins. Histopathological changes in AD have been linked to brain proteome alterations, including aberrant posttranslational modifications (PTMs) such as the hyperphosphorylation of Tau. Most proteomic studies to date have focused on AD progression across different stages of the disease, by targeting one specific brain area at a time. However, in AD vulnerable regions, stage-specific proteomic alterations, including changes in PTM status occur in parallel and remain poorly characterized. Here, we conducted proteomic, phosphoproteomic, and acetylomic analyses of human postmortem tissue samples from AD (Braak stage III-IV, n=11) and control brains (n=12), covering all anatomical areas affected during the limbic stage of the disease (total hippocampus, CA1, entorhinal and perirhinal cortices). Overall, ~6000 proteins, ~9000 unique phosphopeptides and 221 acetylated peptides were accurately quantified across all tissues. Our results reveal significant proteome changes in AD brains compared to controls. Among others, we have observed the dysregulation of pathways related to the adaptive and innate immune responses, including several altered antimicrobial peptides (AMPs). Notably, some of these changes were restricted to specific anatomical areas, while others altered according to disease progression across the regions studied. Our data highlights the molecular heterogeneity of AD and the relevance of neuroinflammation as a major player in AD pathology. Data are available via ProteomeXchange with identifier PXD027173. |
format | Online Article Text |
id | pubmed-8546208 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85462082021-10-27 Topological Dissection of Proteomic Changes Linked to the Limbic Stage of Alzheimer’s Disease Velásquez, Erika Szeitz, Beáta Gil, Jeovanis Rodriguez, Jimmy Palkovits, Miklós Renner, Éva Hortobágyi, Tibor Döme, Péter Nogueira, Fábio CS. Marko-Varga, György Domont, Gilberto B. Rezeli, Melinda Front Immunol Immunology Alzheimer’s disease (AD) is a neurodegenerative disorder and the most common cause of dementia worldwide. In AD, neurodegeneration spreads throughout different areas of the central nervous system (CNS) in a gradual and predictable pattern, causing progressive memory decline and cognitive impairment. Deposition of neurofibrillary tangles (NFTs) in specific CNS regions correlates with the severity of AD and constitutes the basis for disease classification into different Braak stages (I-VI). Early clinical symptoms are typically associated with stages III-IV (i.e., limbic stages) when the involvement of the hippocampus begins. Histopathological changes in AD have been linked to brain proteome alterations, including aberrant posttranslational modifications (PTMs) such as the hyperphosphorylation of Tau. Most proteomic studies to date have focused on AD progression across different stages of the disease, by targeting one specific brain area at a time. However, in AD vulnerable regions, stage-specific proteomic alterations, including changes in PTM status occur in parallel and remain poorly characterized. Here, we conducted proteomic, phosphoproteomic, and acetylomic analyses of human postmortem tissue samples from AD (Braak stage III-IV, n=11) and control brains (n=12), covering all anatomical areas affected during the limbic stage of the disease (total hippocampus, CA1, entorhinal and perirhinal cortices). Overall, ~6000 proteins, ~9000 unique phosphopeptides and 221 acetylated peptides were accurately quantified across all tissues. Our results reveal significant proteome changes in AD brains compared to controls. Among others, we have observed the dysregulation of pathways related to the adaptive and innate immune responses, including several altered antimicrobial peptides (AMPs). Notably, some of these changes were restricted to specific anatomical areas, while others altered according to disease progression across the regions studied. Our data highlights the molecular heterogeneity of AD and the relevance of neuroinflammation as a major player in AD pathology. Data are available via ProteomeXchange with identifier PXD027173. Frontiers Media S.A. 2021-10-12 /pmc/articles/PMC8546208/ /pubmed/34712240 http://dx.doi.org/10.3389/fimmu.2021.750665 Text en Copyright © 2021 Velásquez, Szeitz, Gil, Rodriguez, Palkovits, Renner, Hortobágyi, Döme, Nogueira, Marko-Varga, Domont and Rezeli https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Velásquez, Erika Szeitz, Beáta Gil, Jeovanis Rodriguez, Jimmy Palkovits, Miklós Renner, Éva Hortobágyi, Tibor Döme, Péter Nogueira, Fábio CS. Marko-Varga, György Domont, Gilberto B. Rezeli, Melinda Topological Dissection of Proteomic Changes Linked to the Limbic Stage of Alzheimer’s Disease |
title | Topological Dissection of Proteomic Changes Linked to the Limbic Stage of Alzheimer’s Disease |
title_full | Topological Dissection of Proteomic Changes Linked to the Limbic Stage of Alzheimer’s Disease |
title_fullStr | Topological Dissection of Proteomic Changes Linked to the Limbic Stage of Alzheimer’s Disease |
title_full_unstemmed | Topological Dissection of Proteomic Changes Linked to the Limbic Stage of Alzheimer’s Disease |
title_short | Topological Dissection of Proteomic Changes Linked to the Limbic Stage of Alzheimer’s Disease |
title_sort | topological dissection of proteomic changes linked to the limbic stage of alzheimer’s disease |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546208/ https://www.ncbi.nlm.nih.gov/pubmed/34712240 http://dx.doi.org/10.3389/fimmu.2021.750665 |
work_keys_str_mv | AT velasquezerika topologicaldissectionofproteomicchangeslinkedtothelimbicstageofalzheimersdisease AT szeitzbeata topologicaldissectionofproteomicchangeslinkedtothelimbicstageofalzheimersdisease AT giljeovanis topologicaldissectionofproteomicchangeslinkedtothelimbicstageofalzheimersdisease AT rodriguezjimmy topologicaldissectionofproteomicchangeslinkedtothelimbicstageofalzheimersdisease AT palkovitsmiklos topologicaldissectionofproteomicchangeslinkedtothelimbicstageofalzheimersdisease AT rennereva topologicaldissectionofproteomicchangeslinkedtothelimbicstageofalzheimersdisease AT hortobagyitibor topologicaldissectionofproteomicchangeslinkedtothelimbicstageofalzheimersdisease AT domepeter topologicaldissectionofproteomicchangeslinkedtothelimbicstageofalzheimersdisease AT nogueirafabiocs topologicaldissectionofproteomicchangeslinkedtothelimbicstageofalzheimersdisease AT markovargagyorgy topologicaldissectionofproteomicchangeslinkedtothelimbicstageofalzheimersdisease AT domontgilbertob topologicaldissectionofproteomicchangeslinkedtothelimbicstageofalzheimersdisease AT rezelimelinda topologicaldissectionofproteomicchangeslinkedtothelimbicstageofalzheimersdisease |