Cargando…
Using Summary Statistics to Model Multiplicative Combinations of Initially Analyzed Phenotypes With a Flexible Choice of Covariates
While the promise of electronic medical record and biobank data is large, major questions remain about patient privacy, computational hurdles, and data access. One promising area of recent development is pre-computing non-individually identifiable summary statistics to be made publicly available for...
Autores principales: | Wolf , Jack M., Westra, Jason, Tintle, Nathan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546319/ https://www.ncbi.nlm.nih.gov/pubmed/34712269 http://dx.doi.org/10.3389/fgene.2021.745901 |
Ejemplares similares
-
Computationally efficient, exact, covariate-adjusted genetic principal component analysis by leveraging individual marker summary statistics from large biobanks
por: Wolf, Jack M., et al.
Publicado: (2020) -
Multi-Set Testing Strategies Show Good Behavior When Applied to Very Large Sets of Rare Variants
por: Fore, Ruby, et al.
Publicado: (2020) -
Improved Estimation of Phenotypic Correlations Using Summary Association Statistics
por: Li, Ting, et al.
Publicado: (2021) -
Illustrating, Quantifying, and Correcting for Bias in Post-hoc Analysis of Gene-Based Rare Variant Tests of Association
por: Grinde, Kelsey E., et al.
Publicado: (2017) -
Analyzing metabolomics data for association with genotypes using two-component Gaussian mixture distributions
por: Westra, Jason, et al.
Publicado: (2018)