Cargando…

State of the Art Cell Detection in Bone Marrow Whole Slide Images

CONTEXT: Diseases of the hematopoietic system such as leukemia is diagnosed using bone marrow samples. The cell type distribution plays a major role but requires manual analysis of different cell types in microscopy images. AIMS: Automated analysis of bone marrow samples requires detection and class...

Descripción completa

Detalles Bibliográficos
Autores principales: Gräbel, Philipp, Özkan, Özcan, Crysandt, Martina, Herwartz, Reinhild, Baumann, Melanie, Klinkhammer, Barbara Mara, Boor, Peter, Brümmendorf, Tim Hendrik, Merhof, Dorit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546357/
https://www.ncbi.nlm.nih.gov/pubmed/34760333
http://dx.doi.org/10.4103/jpi.jpi_71_20
Descripción
Sumario:CONTEXT: Diseases of the hematopoietic system such as leukemia is diagnosed using bone marrow samples. The cell type distribution plays a major role but requires manual analysis of different cell types in microscopy images. AIMS: Automated analysis of bone marrow samples requires detection and classification of different cell types. In this work, we propose and compare algorithms for cell localization, which is a key component in automated bone marrow analysis. SETTINGS AND DESIGN: We research fully supervised detection architectures but also propose and evaluate several techniques utilizing weak annotations in a segmentation network. We further incorporate typical cell-like artifacts into our analysis. Whole slide microscopy images are acquired from the human bone marrow samples and annotated by expert hematologists. SUBJECTS AND METHODS: We adapt and evaluate state-of-the-art detection networks. We further propose to utilize the popular U-Net for cell detection by applying suitable preprocessing steps to the annotations. STATISTICAL ANALYSIS USED: Evaluations are performed on a held-out dataset using multiple metrics based on the two different matching algorithms. RESULTS: The results show that the detection of cells in hematopoietic images using state-of-the-art detection networks yields very accurate results. U-Net-based methods are able to slightly improve detection results using adequate preprocessing – despite artifacts and weak annotations. CONCLUSIONS: In this work, we propose, U-Net-based cell detection methods and compare with state-of-the-art detection methods for the localization of hematopoietic cells in high-resolution bone marrow images. We show that even with weak annotations and cell-like artifacts, cells can be localized with high precision.