Cargando…
Browser-based Data Annotation, Active Learning, and Real-Time Distribution of Artificial Intelligence Models: From Tumor Tissue Microarrays to COVID-19 Radiology
BACKGROUND: Artificial intelligence (AI) is fast becoming the tool of choice for scalable and reliable analysis of medical images. However, constraints in sharing medical data outside the institutional or geographical space, as well as difficulties in getting AI models and modeling platforms to work...
Autores principales: | Bhawsar, Praphulla M. S., Abubakar, Mustapha, Schmidt, Marjanka K., Camp, Nicola J., Cessna, Melissa H., Duggan, Máire A., García-Closas, Montserrat, Almeida, Jonas S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546359/ https://www.ncbi.nlm.nih.gov/pubmed/34760334 http://dx.doi.org/10.4103/jpi.jpi_100_20 |
Ejemplares similares
-
The Vertebrate Genome Annotation browser 10 years on
por: Harrow, Jennifer L., et al.
Publicado: (2014) -
Artificial intelligence in radiology
por: Jin, Dakai, et al.
Publicado: (2021) -
QMachine: commodity supercomputing in web browsers
por: Wilkinson, Sean R, et al.
Publicado: (2014) -
Artificial intelligence in dentomaxillofacial radiology
por: Gokdeniz, Seyide Tugce, et al.
Publicado: (2022) -
SNiPA: an interactive, genetic variant-centered annotation browser
por: Arnold, Matthias, et al.
Publicado: (2015)