Cargando…

Betacoronavirus Assembly: Clues and Perspectives for Elucidating SARS-CoV-2 Particle Formation and Egress

In 2019, a new pandemic virus belonging to the betacoronavirus family emerged, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This new coronavirus appeared in Wuhan, China, and is responsible for severe respiratory pneumonia in humans, namely, coronavirus disease 2019 (COVID-19). Havi...

Descripción completa

Detalles Bibliográficos
Autores principales: Bracquemond, David, Muriaux, Delphine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546641/
https://www.ncbi.nlm.nih.gov/pubmed/34579570
http://dx.doi.org/10.1128/mBio.02371-21
Descripción
Sumario:In 2019, a new pandemic virus belonging to the betacoronavirus family emerged, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This new coronavirus appeared in Wuhan, China, and is responsible for severe respiratory pneumonia in humans, namely, coronavirus disease 2019 (COVID-19). Having infected almost 200 million people worldwide and caused more than 4.1 million deaths as of today, this new disease has raised a significant number of questions about its molecular mechanism of replication and, in particular, how infectious viral particles are produced. Although viral entry is well characterized, the full assembly steps of SARS-CoV-2 have still not been fully described. Coronaviruses, including SARS-CoV-2, have four main structural proteins, namely, the spike glycoprotein (S), the membrane glycoprotein (M), the envelope protein (E), and the nucleocapsid protein (N). All these proteins have key roles in the process of coronavirus assembly and budding. In this review, we gathered the current knowledge about betacoronavirus structural proteins involved in viral particle assembly, membrane curvature and scission, and then egress in order to suggest and question a coherent model for SARS-CoV-2 particle production and release.