Cargando…
Bacteroidetocins Target the Essential Outer Membrane Protein BamA of Bacteroidales Symbionts and Pathogens
Bacteroidetocins are a family of antibacterial peptide toxins that are produced by and target members of the phylum Bacteroidetes. To date, 19 bacteroidetocins have been identified, and four have been tested and shown to kill diverse Bacteroidales species (M. J. Coyne, N. Béchon, L. M. Matano, V. L....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546649/ https://www.ncbi.nlm.nih.gov/pubmed/34517753 http://dx.doi.org/10.1128/mBio.02285-21 |
Sumario: | Bacteroidetocins are a family of antibacterial peptide toxins that are produced by and target members of the phylum Bacteroidetes. To date, 19 bacteroidetocins have been identified, and four have been tested and shown to kill diverse Bacteroidales species (M. J. Coyne, N. Béchon, L. M. Matano, V. L. McEneany, et al., Nat Commun 10:3460, 2019, https://doi.org/10.1038/s41467-019-11494-1). Here, we identify the target and likely mechanism of action of the bacteroidetocins. We selected seven spontaneous mutants of four different genera, all resistant to bacteroidetocin A (Bd-A) and found that all contained mutations in a single gene, bamA. Construction of three of these bamA mutants in the wild-type (WT) strains confirmed they confer resistance to Bd-A as well as to other bacteroidetocins. We identified an aspartate residue of BamA at the beginning of exterior loop 3 (eL3) that, when altered, renders strains resistant to Bd-A. Analysis of a panel of diverse Bacteroidales strains showed a correlation between the presence of this aspartate residue and Bd-A sensitivity. Fluorescence microscopy and transmission electron microscopy (TEM) analysis of Bd-A-treated cells showed cellular morphological changes consistent with a BamA defect. Transcriptomic analysis of Bd-A-treated cells revealed gene expression changes indicative of cell envelope stress. Studies in mice revealed that bacteroidetocin-resistant mutants are outcompeted by their WT strain in vivo. Analyses of longitudinal human gut isolates showed that bamA mutations leading to bacteroidetocin resistance do not become fixed in the human gut, even in bacteroidetocin-producing strains and nonproducing coresident strains. Together, these data lend further support to the applicability of the bacteroidetocins as therapeutic peptides in the treatment of maladies involving Bacteroidales species. |
---|