Cargando…
Revisiting the Role of Toxoplasma gondii ERK7 in the Maintenance and Stability of the Apical Complex
Toxoplasma gondii extracellular signal-regulated kinase 7 (ERK7) is known to contribute to the integrity of the apical complex and to participate in the final step of conoid biogenesis. In the absence of ERK7, mature parasites lose their conoid complex and are unable to glide, invade, or egress from...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546650/ https://www.ncbi.nlm.nih.gov/pubmed/34607461 http://dx.doi.org/10.1128/mBio.02057-21 |
_version_ | 1784590228538785792 |
---|---|
author | Dos Santos Pacheco, Nicolas Tosetti, Nicolò Krishnan, Aarti Haase, Romuald Maco, Bohumil Suarez, Catherine Ren, Bingjian Soldati-Favre, Dominique |
author_facet | Dos Santos Pacheco, Nicolas Tosetti, Nicolò Krishnan, Aarti Haase, Romuald Maco, Bohumil Suarez, Catherine Ren, Bingjian Soldati-Favre, Dominique |
author_sort | Dos Santos Pacheco, Nicolas |
collection | PubMed |
description | Toxoplasma gondii extracellular signal-regulated kinase 7 (ERK7) is known to contribute to the integrity of the apical complex and to participate in the final step of conoid biogenesis. In the absence of ERK7, mature parasites lose their conoid complex and are unable to glide, invade, or egress from host cells. In contrast to a previous report, we show here that the depletion of ERK7 phenocopies the depletion of the apical cap protein AC9 or AC10. The absence of ERK7 leads to the loss of the apical polar ring (APR), the disorganization of the basket of subpellicular microtubules (SPMTs), and a severe impairment in microneme secretion. Ultrastructure expansion microscopy (U-ExM), coupled to N-hydroxysuccinimide ester (NHS-ester) staining on intracellular parasites, offers an unprecedented level of resolution and highlights the disorganization of the rhoptries as well as the dilated plasma membrane at the apical pole in the absence of ERK7. Comparative proteomics analysis of wild-type and ERK7-depleted parasites confirmed the disappearance of known apical complex proteins, including markers of the apical polar ring and a new apical cap named AC11. Concomitantly, the absence of ERK7 led to an accumulation of microneme proteins, resulting from the defect in the exocytosis of the organelles. AC9-depleted parasites were included as controls and exhibited an increase in inner membrane complex proteins, with two new proteins assigned to this compartment, namely, IMC33 and IMC34. |
format | Online Article Text |
id | pubmed-8546650 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-85466502021-11-04 Revisiting the Role of Toxoplasma gondii ERK7 in the Maintenance and Stability of the Apical Complex Dos Santos Pacheco, Nicolas Tosetti, Nicolò Krishnan, Aarti Haase, Romuald Maco, Bohumil Suarez, Catherine Ren, Bingjian Soldati-Favre, Dominique mBio Research Article Toxoplasma gondii extracellular signal-regulated kinase 7 (ERK7) is known to contribute to the integrity of the apical complex and to participate in the final step of conoid biogenesis. In the absence of ERK7, mature parasites lose their conoid complex and are unable to glide, invade, or egress from host cells. In contrast to a previous report, we show here that the depletion of ERK7 phenocopies the depletion of the apical cap protein AC9 or AC10. The absence of ERK7 leads to the loss of the apical polar ring (APR), the disorganization of the basket of subpellicular microtubules (SPMTs), and a severe impairment in microneme secretion. Ultrastructure expansion microscopy (U-ExM), coupled to N-hydroxysuccinimide ester (NHS-ester) staining on intracellular parasites, offers an unprecedented level of resolution and highlights the disorganization of the rhoptries as well as the dilated plasma membrane at the apical pole in the absence of ERK7. Comparative proteomics analysis of wild-type and ERK7-depleted parasites confirmed the disappearance of known apical complex proteins, including markers of the apical polar ring and a new apical cap named AC11. Concomitantly, the absence of ERK7 led to an accumulation of microneme proteins, resulting from the defect in the exocytosis of the organelles. AC9-depleted parasites were included as controls and exhibited an increase in inner membrane complex proteins, with two new proteins assigned to this compartment, namely, IMC33 and IMC34. American Society for Microbiology 2021-10-05 /pmc/articles/PMC8546650/ /pubmed/34607461 http://dx.doi.org/10.1128/mBio.02057-21 Text en Copyright © 2021 Dos Santos Pacheco et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Dos Santos Pacheco, Nicolas Tosetti, Nicolò Krishnan, Aarti Haase, Romuald Maco, Bohumil Suarez, Catherine Ren, Bingjian Soldati-Favre, Dominique Revisiting the Role of Toxoplasma gondii ERK7 in the Maintenance and Stability of the Apical Complex |
title | Revisiting the Role of Toxoplasma gondii ERK7 in the Maintenance and Stability of the Apical Complex |
title_full | Revisiting the Role of Toxoplasma gondii ERK7 in the Maintenance and Stability of the Apical Complex |
title_fullStr | Revisiting the Role of Toxoplasma gondii ERK7 in the Maintenance and Stability of the Apical Complex |
title_full_unstemmed | Revisiting the Role of Toxoplasma gondii ERK7 in the Maintenance and Stability of the Apical Complex |
title_short | Revisiting the Role of Toxoplasma gondii ERK7 in the Maintenance and Stability of the Apical Complex |
title_sort | revisiting the role of toxoplasma gondii erk7 in the maintenance and stability of the apical complex |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546650/ https://www.ncbi.nlm.nih.gov/pubmed/34607461 http://dx.doi.org/10.1128/mBio.02057-21 |
work_keys_str_mv | AT dossantospacheconicolas revisitingtheroleoftoxoplasmagondiierk7inthemaintenanceandstabilityoftheapicalcomplex AT tosettinicolo revisitingtheroleoftoxoplasmagondiierk7inthemaintenanceandstabilityoftheapicalcomplex AT krishnanaarti revisitingtheroleoftoxoplasmagondiierk7inthemaintenanceandstabilityoftheapicalcomplex AT haaseromuald revisitingtheroleoftoxoplasmagondiierk7inthemaintenanceandstabilityoftheapicalcomplex AT macobohumil revisitingtheroleoftoxoplasmagondiierk7inthemaintenanceandstabilityoftheapicalcomplex AT suarezcatherine revisitingtheroleoftoxoplasmagondiierk7inthemaintenanceandstabilityoftheapicalcomplex AT renbingjian revisitingtheroleoftoxoplasmagondiierk7inthemaintenanceandstabilityoftheapicalcomplex AT soldatifavredominique revisitingtheroleoftoxoplasmagondiierk7inthemaintenanceandstabilityoftheapicalcomplex |