Cargando…
Whole-Genome Enrichment and Sequencing of Chlamydia trachomatis Directly from Patient Clinical Vaginal and Rectal Swabs
Chlamydia trachomatis, an obligately intracellular bacterium, is the most prevalent cause of bacterial sexually transmitted infections (STIs) worldwide. Numbers of U.S. infections of the urogenital tract and rectum have increased annually. Because C. trachomatis is not easily cultured, comparative g...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546720/ https://www.ncbi.nlm.nih.gov/pubmed/33658279 http://dx.doi.org/10.1128/mSphere.01302-20 |
Sumario: | Chlamydia trachomatis, an obligately intracellular bacterium, is the most prevalent cause of bacterial sexually transmitted infections (STIs) worldwide. Numbers of U.S. infections of the urogenital tract and rectum have increased annually. Because C. trachomatis is not easily cultured, comparative genomic studies are limited, restricting our understanding of strain diversity and emergence among populations globally. While Agilent SureSelect(XT) target enrichment RNA bait libraries have been developed for whole-genome enrichment and sequencing of C. trachomatis directly from clinical urine, vaginal, conjunctival, and rectal samples, public access to these libraries is not available. We therefore designed an RNA bait library (34,795 120-mer probes based on 85 genomes, versus 33,619 probes using 74 genomes in a previous one) to augment organism sequencing from clinical samples that can be shared with the scientific community, enabling comparison studies. We describe the library and limit of detection for genome copy input, and we present results of 100% efficiency and high-resolution determination of recombination and identical genomes within vaginal-rectal specimen pairs in women. This workflow provides a robust approach for discerning genomic diversity and advancing our understanding of the molecular epidemiology of contemporary C. trachomatis STIs across sample types, geographic populations, sexual networks, and outbreaks associated with proctitis/proctocolitis among women and men who have sex with men. IMPORTANCE Chlamydia trachomatis is an obligate intracellular bacterium that is not easily cultured, which limits our understanding of urogenital and rectal C. trachomatis transmission and impact on morbidity. To provide a publicly available workflow for whole-genome target enrichment and sequencing of C. trachomatis directly from clinical urine, vaginal, conjunctival, and rectal specimens, we developed and report on an RNA bait library to enrich the organism from clinical samples for sequencing. We demonstrate an increased efficiency in the percentage of reads mapping to C. trachomatis and identified recombinant and identical C. trachomatis genomes in paired vaginal-rectal samples from women. Our workflow provides a robust genomic epidemiologic approach to advance our understanding of C. trachomatis strains causing ocular, urogenital, and rectal infections and to explore geo-sexual networks, outbreaks of colorectal infections among women and men who have sex with men, and the role of these strains in morbidity. |
---|