Cargando…
Distinctive Roles of Two Acinetobactin Isomers in Challenging Host Nutritional Immunity
The human pathogen Acinetobacter baumannii produces and utilizes acinetobactin for iron assimilation. Although two isomeric structures of acinetobactin, one featuring an oxazoline (Oxa) and the other with an isoxazolidinone (Isox) at the core, have been identified, their differential roles as virule...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546848/ https://www.ncbi.nlm.nih.gov/pubmed/34517755 http://dx.doi.org/10.1128/mBio.02248-21 |
_version_ | 1784590272770867200 |
---|---|
author | Kim, Mingi Kim, Do Young Song, Woon Young Park, So Eun Harrison, Simone A. Chazin, Walter J. Oh, Man Hwan Kim, Hak Joong |
author_facet | Kim, Mingi Kim, Do Young Song, Woon Young Park, So Eun Harrison, Simone A. Chazin, Walter J. Oh, Man Hwan Kim, Hak Joong |
author_sort | Kim, Mingi |
collection | PubMed |
description | The human pathogen Acinetobacter baumannii produces and utilizes acinetobactin for iron assimilation. Although two isomeric structures of acinetobactin, one featuring an oxazoline (Oxa) and the other with an isoxazolidinone (Isox) at the core, have been identified, their differential roles as virulence factors for successful infection have yet to be established. This study provides direct evidence that Oxa supplies iron more efficiently than Isox, primarily owing to its specific recognition by the cognate outer membrane receptor, BauA. The other components in the acinetobactin uptake machinery appear not to discriminate these isomers. Interestingly, Oxa was found to form a stable iron complex that is resistant to release of the chelated iron upon competition by Isox, despite their comparable apparent affinities to Fe(III). In addition, both Oxa and Isox were found to be competent iron chelators successfully scavenging iron from host metal sequestering proteins responsible for nutritional immunity. These observations collectively led us to propose a new model for acinetobactin-based iron assimilation at infection sites. Namely, Oxa is the principal siderophore mediating the core Fe(III) supply chain for A. baumannii, whereas Isox plays a minor role in the iron delivery and, alternatively, functions as an auxiliary iron collector that channels the iron pool toward Oxa. The unique siderophore utilization mechanism proposed here represents an intriguing strategy for pathogen adaptation under the various nutritional stresses encountered at infection sites. |
format | Online Article Text |
id | pubmed-8546848 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-85468482021-11-04 Distinctive Roles of Two Acinetobactin Isomers in Challenging Host Nutritional Immunity Kim, Mingi Kim, Do Young Song, Woon Young Park, So Eun Harrison, Simone A. Chazin, Walter J. Oh, Man Hwan Kim, Hak Joong mBio Research Article The human pathogen Acinetobacter baumannii produces and utilizes acinetobactin for iron assimilation. Although two isomeric structures of acinetobactin, one featuring an oxazoline (Oxa) and the other with an isoxazolidinone (Isox) at the core, have been identified, their differential roles as virulence factors for successful infection have yet to be established. This study provides direct evidence that Oxa supplies iron more efficiently than Isox, primarily owing to its specific recognition by the cognate outer membrane receptor, BauA. The other components in the acinetobactin uptake machinery appear not to discriminate these isomers. Interestingly, Oxa was found to form a stable iron complex that is resistant to release of the chelated iron upon competition by Isox, despite their comparable apparent affinities to Fe(III). In addition, both Oxa and Isox were found to be competent iron chelators successfully scavenging iron from host metal sequestering proteins responsible for nutritional immunity. These observations collectively led us to propose a new model for acinetobactin-based iron assimilation at infection sites. Namely, Oxa is the principal siderophore mediating the core Fe(III) supply chain for A. baumannii, whereas Isox plays a minor role in the iron delivery and, alternatively, functions as an auxiliary iron collector that channels the iron pool toward Oxa. The unique siderophore utilization mechanism proposed here represents an intriguing strategy for pathogen adaptation under the various nutritional stresses encountered at infection sites. American Society for Microbiology 2021-09-14 /pmc/articles/PMC8546848/ /pubmed/34517755 http://dx.doi.org/10.1128/mBio.02248-21 Text en Copyright © 2021 Kim et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Kim, Mingi Kim, Do Young Song, Woon Young Park, So Eun Harrison, Simone A. Chazin, Walter J. Oh, Man Hwan Kim, Hak Joong Distinctive Roles of Two Acinetobactin Isomers in Challenging Host Nutritional Immunity |
title | Distinctive Roles of Two Acinetobactin Isomers in Challenging Host Nutritional Immunity |
title_full | Distinctive Roles of Two Acinetobactin Isomers in Challenging Host Nutritional Immunity |
title_fullStr | Distinctive Roles of Two Acinetobactin Isomers in Challenging Host Nutritional Immunity |
title_full_unstemmed | Distinctive Roles of Two Acinetobactin Isomers in Challenging Host Nutritional Immunity |
title_short | Distinctive Roles of Two Acinetobactin Isomers in Challenging Host Nutritional Immunity |
title_sort | distinctive roles of two acinetobactin isomers in challenging host nutritional immunity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546848/ https://www.ncbi.nlm.nih.gov/pubmed/34517755 http://dx.doi.org/10.1128/mBio.02248-21 |
work_keys_str_mv | AT kimmingi distinctiverolesoftwoacinetobactinisomersinchallenginghostnutritionalimmunity AT kimdoyoung distinctiverolesoftwoacinetobactinisomersinchallenginghostnutritionalimmunity AT songwoonyoung distinctiverolesoftwoacinetobactinisomersinchallenginghostnutritionalimmunity AT parksoeun distinctiverolesoftwoacinetobactinisomersinchallenginghostnutritionalimmunity AT harrisonsimonea distinctiverolesoftwoacinetobactinisomersinchallenginghostnutritionalimmunity AT chazinwalterj distinctiverolesoftwoacinetobactinisomersinchallenginghostnutritionalimmunity AT ohmanhwan distinctiverolesoftwoacinetobactinisomersinchallenginghostnutritionalimmunity AT kimhakjoong distinctiverolesoftwoacinetobactinisomersinchallenginghostnutritionalimmunity |