Cargando…
Dynamic Bayesian Networks for Integrating Multi-omics Time Series Microbiome Data
A key challenge in the analysis of longitudinal microbiome data is the inference of temporal interactions between microbial taxa, their genes, the metabolites that they consume and produce, and host genes. To address these challenges, we developed a computational pipeline, a pipeline for the analysi...
Autores principales: | Ruiz-Perez, Daniel, Lugo-Martinez, Jose, Bourguignon, Natalia, Mathee, Kalai, Lerner, Betiana, Bar-Joseph, Ziv, Narasimhan, Giri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546994/ https://www.ncbi.nlm.nih.gov/pubmed/33785573 http://dx.doi.org/10.1128/mSystems.01105-20 |
Ejemplares similares
-
Inferring directional relationships in microbial communities using signed Bayesian networks
por: Sazal, Musfiqur, et al.
Publicado: (2020) -
Dynamic interaction network inference from longitudinal microbiome data
por: Lugo-Martinez, Jose, et al.
Publicado: (2019) -
Causal effects in microbiomes using interventional calculus
por: Sazal, Musfiqur, et al.
Publicado: (2021) -
Metagenomics, Metatranscriptomics, and Metabolomics Approaches for Microbiome Analysis
por: Aguiar-Pulido, Vanessa, et al.
Publicado: (2016) -
So you think you can PLS-DA?
por: Ruiz-Perez, Daniel, et al.
Publicado: (2020)