Cargando…

Bacterial Microcompartments Coupled with Extracellular Electron Transfer Drive the Anaerobic Utilization of Ethanolamine in Listeria monocytogenes

Ethanolamine (EA) is a valuable microbial carbon and nitrogen source derived from cell membranes. EA catabolism is suggested to occur in a cellular metabolic subsystem called a bacterial microcompartment (BMC), and the activation of EA utilization (eut) genes is linked to bacterial pathogenesis. Des...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeng, Zhe, Boeren, Sjef, Bhandula, Varaang, Light, Samuel H., Smid, Eddy J., Notebaart, Richard A., Abee, Tjakko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547011/
https://www.ncbi.nlm.nih.gov/pubmed/33850044
http://dx.doi.org/10.1128/mSystems.01349-20
_version_ 1784590302950981632
author Zeng, Zhe
Boeren, Sjef
Bhandula, Varaang
Light, Samuel H.
Smid, Eddy J.
Notebaart, Richard A.
Abee, Tjakko
author_facet Zeng, Zhe
Boeren, Sjef
Bhandula, Varaang
Light, Samuel H.
Smid, Eddy J.
Notebaart, Richard A.
Abee, Tjakko
author_sort Zeng, Zhe
collection PubMed
description Ethanolamine (EA) is a valuable microbial carbon and nitrogen source derived from cell membranes. EA catabolism is suggested to occur in a cellular metabolic subsystem called a bacterial microcompartment (BMC), and the activation of EA utilization (eut) genes is linked to bacterial pathogenesis. Despite reports showing that the activation of eut is regulated by a vitamin B(12)-binding riboswitch and that upregulation of eut genes occurs in mice, it remains unknown whether EA catabolism is BMC dependent in Listeria monocytogenes. Here, we provide evidence for BMC-dependent anaerobic EA utilization via metabolic analysis, proteomics, and electron microscopy. First, we show vitamin B(12)-induced activation of the eut operon in L. monocytogenes coupled to the utilization of EA, thereby enabling growth. Next, we demonstrate BMC formation connected with EA catabolism with the production of acetate and ethanol in a molar ratio of 2:1. Flux via the ATP-generating acetate branch causes an apparent redox imbalance due to the reduced regeneration of NAD(+) in the ethanol branch resulting in a surplus of NADH. We hypothesize that the redox imbalance is compensated by linking eut BMCs to anaerobic flavin-based extracellular electron transfer (EET). Using L. monocytogenes wild-type, BMC mutant, and EET mutant strains, we demonstrate an interaction between BMCs and EET and provide evidence for a role of Fe(3+) as an electron acceptor. Taken together, our results suggest an important role of BMC-dependent EA catabolism in L. monocytogenes growth in anaerobic environments like the human gastrointestinal tract, with a crucial role for the flavin-based EET system in redox balancing. IMPORTANCE Listeria monocytogenes is a foodborne pathogen causing severe illness, and as such, it is crucial to understand the molecular mechanisms contributing to pathogenicity. One carbon source that allows L. monocytogenes to grow in humans is ethanolamine (EA), which is derived from phospholipids present in eukaryotic cell membranes. It is hypothesized that EA utilization occurs in bacterial microcompartments (BMCs), self-assembling subcellular proteinaceous structures and analogs of eukaryotic organelles. Here, we demonstrate that BMC-driven utilization of EA in L. monocytogenes results in increased energy production essential for anaerobic growth. However, exploiting BMCs and the encapsulated metabolic pathways also requires the balancing of oxidative and reductive pathways. We now provide evidence that L. monocytogenes copes with this by linking BMC activity to flavin-based extracellular electron transfer (EET) using iron as an electron acceptor. Our results shed new light on an important molecular mechanism that enables L. monocytogenes to grow using host-derived phospholipid degradation products.
format Online
Article
Text
id pubmed-8547011
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-85470112021-10-27 Bacterial Microcompartments Coupled with Extracellular Electron Transfer Drive the Anaerobic Utilization of Ethanolamine in Listeria monocytogenes Zeng, Zhe Boeren, Sjef Bhandula, Varaang Light, Samuel H. Smid, Eddy J. Notebaart, Richard A. Abee, Tjakko mSystems Research Article Ethanolamine (EA) is a valuable microbial carbon and nitrogen source derived from cell membranes. EA catabolism is suggested to occur in a cellular metabolic subsystem called a bacterial microcompartment (BMC), and the activation of EA utilization (eut) genes is linked to bacterial pathogenesis. Despite reports showing that the activation of eut is regulated by a vitamin B(12)-binding riboswitch and that upregulation of eut genes occurs in mice, it remains unknown whether EA catabolism is BMC dependent in Listeria monocytogenes. Here, we provide evidence for BMC-dependent anaerobic EA utilization via metabolic analysis, proteomics, and electron microscopy. First, we show vitamin B(12)-induced activation of the eut operon in L. monocytogenes coupled to the utilization of EA, thereby enabling growth. Next, we demonstrate BMC formation connected with EA catabolism with the production of acetate and ethanol in a molar ratio of 2:1. Flux via the ATP-generating acetate branch causes an apparent redox imbalance due to the reduced regeneration of NAD(+) in the ethanol branch resulting in a surplus of NADH. We hypothesize that the redox imbalance is compensated by linking eut BMCs to anaerobic flavin-based extracellular electron transfer (EET). Using L. monocytogenes wild-type, BMC mutant, and EET mutant strains, we demonstrate an interaction between BMCs and EET and provide evidence for a role of Fe(3+) as an electron acceptor. Taken together, our results suggest an important role of BMC-dependent EA catabolism in L. monocytogenes growth in anaerobic environments like the human gastrointestinal tract, with a crucial role for the flavin-based EET system in redox balancing. IMPORTANCE Listeria monocytogenes is a foodborne pathogen causing severe illness, and as such, it is crucial to understand the molecular mechanisms contributing to pathogenicity. One carbon source that allows L. monocytogenes to grow in humans is ethanolamine (EA), which is derived from phospholipids present in eukaryotic cell membranes. It is hypothesized that EA utilization occurs in bacterial microcompartments (BMCs), self-assembling subcellular proteinaceous structures and analogs of eukaryotic organelles. Here, we demonstrate that BMC-driven utilization of EA in L. monocytogenes results in increased energy production essential for anaerobic growth. However, exploiting BMCs and the encapsulated metabolic pathways also requires the balancing of oxidative and reductive pathways. We now provide evidence that L. monocytogenes copes with this by linking BMC activity to flavin-based extracellular electron transfer (EET) using iron as an electron acceptor. Our results shed new light on an important molecular mechanism that enables L. monocytogenes to grow using host-derived phospholipid degradation products. American Society for Microbiology 2021-04-13 /pmc/articles/PMC8547011/ /pubmed/33850044 http://dx.doi.org/10.1128/mSystems.01349-20 Text en Copyright © 2021 Zeng et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Zeng, Zhe
Boeren, Sjef
Bhandula, Varaang
Light, Samuel H.
Smid, Eddy J.
Notebaart, Richard A.
Abee, Tjakko
Bacterial Microcompartments Coupled with Extracellular Electron Transfer Drive the Anaerobic Utilization of Ethanolamine in Listeria monocytogenes
title Bacterial Microcompartments Coupled with Extracellular Electron Transfer Drive the Anaerobic Utilization of Ethanolamine in Listeria monocytogenes
title_full Bacterial Microcompartments Coupled with Extracellular Electron Transfer Drive the Anaerobic Utilization of Ethanolamine in Listeria monocytogenes
title_fullStr Bacterial Microcompartments Coupled with Extracellular Electron Transfer Drive the Anaerobic Utilization of Ethanolamine in Listeria monocytogenes
title_full_unstemmed Bacterial Microcompartments Coupled with Extracellular Electron Transfer Drive the Anaerobic Utilization of Ethanolamine in Listeria monocytogenes
title_short Bacterial Microcompartments Coupled with Extracellular Electron Transfer Drive the Anaerobic Utilization of Ethanolamine in Listeria monocytogenes
title_sort bacterial microcompartments coupled with extracellular electron transfer drive the anaerobic utilization of ethanolamine in listeria monocytogenes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547011/
https://www.ncbi.nlm.nih.gov/pubmed/33850044
http://dx.doi.org/10.1128/mSystems.01349-20
work_keys_str_mv AT zengzhe bacterialmicrocompartmentscoupledwithextracellularelectrontransferdrivetheanaerobicutilizationofethanolamineinlisteriamonocytogenes
AT boerensjef bacterialmicrocompartmentscoupledwithextracellularelectrontransferdrivetheanaerobicutilizationofethanolamineinlisteriamonocytogenes
AT bhandulavaraang bacterialmicrocompartmentscoupledwithextracellularelectrontransferdrivetheanaerobicutilizationofethanolamineinlisteriamonocytogenes
AT lightsamuelh bacterialmicrocompartmentscoupledwithextracellularelectrontransferdrivetheanaerobicutilizationofethanolamineinlisteriamonocytogenes
AT smideddyj bacterialmicrocompartmentscoupledwithextracellularelectrontransferdrivetheanaerobicutilizationofethanolamineinlisteriamonocytogenes
AT notebaartricharda bacterialmicrocompartmentscoupledwithextracellularelectrontransferdrivetheanaerobicutilizationofethanolamineinlisteriamonocytogenes
AT abeetjakko bacterialmicrocompartmentscoupledwithextracellularelectrontransferdrivetheanaerobicutilizationofethanolamineinlisteriamonocytogenes