Cargando…
Quantification of pulmonary involvement in COVID-19 pneumonia by means of a cascade of two U-nets: training and assessment on multiple datasets using different annotation criteria
PURPOSE: This study aims at exploiting artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions. The limited data availability and the annotation quality are relevant factors in training AI-methods. We investigated the effects of using multip...
Autores principales: | Lizzi, Francesca, Agosti, Abramo, Brero, Francesca, Cabini, Raffaella Fiamma, Fantacci, Maria Evelina, Figini, Silvia, Lascialfari, Alessandro, Laruina, Francesco, Oliva, Piernicola, Piffer, Stefano, Postuma, Ian, Rinaldi, Lisa, Talamonti, Cinzia, Retico, Alessandra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547130/ https://www.ncbi.nlm.nih.gov/pubmed/34698988 http://dx.doi.org/10.1007/s11548-021-02501-2 |
Ejemplares similares
-
Quantification of pulmonary involvement in COVID-19 pneumonia: an upgrade of the LungQuant software for lung CT segmentation
por: Lizzi, Francesca, et al.
Publicado: (2023) -
A multicenter evaluation of a deep learning software (LungQuant) for lung parenchyma characterization in COVID-19 pneumonia
por: Scapicchio, Camilla, et al.
Publicado: (2023) -
Effect of data harmonization of multicentric dataset in ASD/TD classification
por: Serra, Giacomo, et al.
Publicado: (2023) -
Preliminary report on harmonization of features extraction process using the ComBat tool in the multi-center “Blue Sky Radiomics” study on stage III unresectable NSCLC
por: Cabini, Raffaella Fiamma, et al.
Publicado: (2022) -
Hippocampal subfields at ultra high field MRI: An overview of segmentation and measurement methods
por: Giuliano, Alessia, et al.
Publicado: (2017)