Cargando…

Carbon flux around leaf-cytosolic glyceraldehyde-3-phosphate dehydrogenase introduces a (13)C signal in plant glucose

Within the plant and Earth sciences, stable isotope analysis is a versatile tool conveying information (inter alia) about plant physiological and paleoclimate variability across scales. Here, we identify a (13)C signal (i.e. systematic (13)C/(12)C variation) at tree-ring glucose C-4 and report an ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Wieloch, Thomas, Werner, Roland Anton, Schleucher, Jürgen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547152/
https://www.ncbi.nlm.nih.gov/pubmed/34223885
http://dx.doi.org/10.1093/jxb/erab316
Descripción
Sumario:Within the plant and Earth sciences, stable isotope analysis is a versatile tool conveying information (inter alia) about plant physiological and paleoclimate variability across scales. Here, we identify a (13)C signal (i.e. systematic (13)C/(12)C variation) at tree-ring glucose C-4 and report an experimentally testable theory on its origin. We propose the signal is introduced by glyceraldehyde-3-phosphate dehydrogenases in the cytosol of leaves. It conveys two kinds of (potentially convoluted) information: (i) commitment of glyceraldehyde 3-phosphate to 3-phosphoglycerate versus fructose 1,6-bisphosphate metabolism; and (ii) the contribution of non-phosphorylating versus phosphorylating glyceraldehyde-3-phosphate dehydrogenase to catalysing the glyceraldehyde 3-phosphate to 3-phosphoglycerate forward reaction of glycolysis. The theory is supported by (13)C fractionation modelling. Modelling results provide the first evidence in support of the cytosolic oxidation–reduction (COR) cycle, a carbon-neutral mechanism supplying NADPH at the expense of ATP and NADH, which may help to maintain leaf-cytosolic redox balances. In line with expectations related to COR cycling, we found a positive correlation between air vapour pressure deficit and (13)C discrimination at glucose C-4. Overall, (13)C-4 signal analysis may enable an improved understanding of leaf carbon and energy metabolism.