Cargando…
Discovering disease–disease associations using electronic health records in The Guideline Advantage (TGA) dataset
Certain diseases have strong comorbidity and co-occurrence with others. Understanding disease–disease associations can potentially increase awareness among healthcare providers of co-occurring conditions and facilitate earlier diagnosis, prevention and treatment of patients. In this study, we utiliz...
Autores principales: | Guo, Aixia, Khan, Yosef M., Langabeer, James R., Foraker, Randi E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547216/ https://www.ncbi.nlm.nih.gov/pubmed/34697328 http://dx.doi.org/10.1038/s41598-021-00345-z |
Ejemplares similares
-
Predicting cardiovascular health trajectories in time-series electronic health records with LSTM models
por: Guo, Aixia, et al.
Publicado: (2021) -
Time-series cardiovascular risk factors and receipt of screening for breast, cervical, and colon cancer: The Guideline Advantage
por: Guo, Aixia, et al.
Publicado: (2020) -
Application of a time-series deep learning model to predict cardiac dysrhythmias in electronic health records
por: Guo, Aixia, et al.
Publicado: (2021) -
Cardiovascular Health Trends in Electronic Health Record Data (2012–2015): A Cross-Sectional Analysis of The Guideline Advantage™
por: Rudy, Joyce E., et al.
Publicado: (2019) -
Women and ethnoracial minorities with poor cardiovascular health measures associated with a higher risk of developing mood disorder
por: Guo, Aixia, et al.
Publicado: (2021)