Cargando…
One Dimensional Reduction of a Renewal Equation for a Measure-Valued Function of Time Describing Population Dynamics
Despite their relevance in mathematical biology, there are, as yet, few general results about the asymptotic behaviour of measure valued solutions of renewal equations on the basis of assumptions concerning the kernel. We characterise, via their kernels, a class of renewal equations whose measure-va...
Autores principales: | Franco, Eugenia, Gyllenberg, Mats, Diekmann, Odo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547227/ https://www.ncbi.nlm.nih.gov/pubmed/34720280 http://dx.doi.org/10.1007/s10440-021-00440-3 |
Ejemplares similares
-
On models of physiologically structured populations and their reduction to ordinary differential equations
por: Diekmann, Odo, et al.
Publicado: (2019) -
Finite dimensional state representation of physiologically structured populations
por: Diekmann, Odo, et al.
Publicado: (2019) -
On the characteristic equation [Formula: see text] and its use in the context of a cell population model
por: Diekmann, Odo, et al.
Publicado: (2015) -
Delay equations: functional-, complex-, and nonlinear analysis
por: Diekmann, Odo, et al.
Publicado: (1995) -
Dangerous connections: on binding site models of infectious disease dynamics
por: Leung, Ka Yin, et al.
Publicado: (2016)