Cargando…
Contextual contact tracing based on stochastic compartment modeling and spatial risk assessment
The current situation of COVID-19 highlights the paramount importance of infectious disease surveillance, which necessitates early monitoring for effective response. Policymakers are interested in data insights identifying high-risk areas as well as individuals to be quarantined, especially as the p...
Autores principales: | Mahmood, Mateen, Mateu, Jorge, Hernández-Orallo, Enrique |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547309/ https://www.ncbi.nlm.nih.gov/pubmed/34720737 http://dx.doi.org/10.1007/s00477-021-02065-2 |
Ejemplares similares
-
Modeling infectious disease dynamics: Integrating contact tracing-based stochastic compartment and spatio-temporal risk models
por: Mahmood, Mateen, et al.
Publicado: (2022) -
A methodology for evaluating digital contact tracing apps based on the COVID-19 experience
por: Hernández-Orallo, Enrique, et al.
Publicado: (2022) -
A stochastic Bayesian bootstrapping model for COVID-19 data
por: Calatayud, Julia, et al.
Publicado: (2022) -
Spatio-temporal stochastic differential equations for crime incidence modeling
por: Calatayud, Julia, et al.
Publicado: (2023) -
Stochastic sampling effects favor manual over digital contact tracing
por: Mancastroppa, Marco, et al.
Publicado: (2021)