Cargando…
Nitric Oxide Impacts Human Gut Microbiota Diversity and Functionalities
The disruption of gut microbiota homeostasis has been associated with numerous diseases and with a disproportionate inflammatory response, including overproduction of nitric oxide (NO) in the intestinal lumen. However, the influence of NO on the human gut microbiota has not been well characterized y...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547463/ https://www.ncbi.nlm.nih.gov/pubmed/34519530 http://dx.doi.org/10.1128/mSystems.00558-21 |
_version_ | 1784590385271537664 |
---|---|
author | Leclerc, Marion Bedu-Ferrari, Cassandre Etienne-Mesmin, Lucie Mariadassou, Mahendra Lebreuilly, Lucie Tran, Seav-Ly Brazeau, Laurence Mayeur, Camille Delmas, Julien Rué, Olivier Denis, Sylvain Blanquet-Diot, Stéphanie Ramarao, Nalini |
author_facet | Leclerc, Marion Bedu-Ferrari, Cassandre Etienne-Mesmin, Lucie Mariadassou, Mahendra Lebreuilly, Lucie Tran, Seav-Ly Brazeau, Laurence Mayeur, Camille Delmas, Julien Rué, Olivier Denis, Sylvain Blanquet-Diot, Stéphanie Ramarao, Nalini |
author_sort | Leclerc, Marion |
collection | PubMed |
description | The disruption of gut microbiota homeostasis has been associated with numerous diseases and with a disproportionate inflammatory response, including overproduction of nitric oxide (NO) in the intestinal lumen. However, the influence of NO on the human gut microbiota has not been well characterized yet. We used in vitro fermentation systems inoculated with human fecal samples to monitor the effect of repetitive NO pulses on the gut microbiota. NO exposure increased the redox potential and modified the fermentation profile and gas production. The overall metabolome was modified, reflecting less strict anaerobic conditions and shifts in amino acid and nitrogen metabolism. NO exposure led to a microbial shift in diversity with a decrease in Clostridium leptum group and Faecalibacterium prausnitzii biomass and an increased abundance of the Dialister genus. Escherichia coli, Enterococcus faecalis, and Proteus mirabilis operational taxonomic unit abundance increased, and strains from those species isolated after NO stress showed resistance to high NO concentrations. As a whole, NO quickly changed microbial fermentations, functions, and composition in a pulse- and dose-dependent manner. NO could shift, over time, the trophic chain to conditions that are unfavorable for strict anaerobic microbial processes, implying that a prolonged or uncontrolled inflammation has detrimental and irreversible consequences on the human microbiome. IMPORTANCE Gut microbiota dysbiosis has been associated with inflammatory diseases. The human inflammatory response leads to an overproduction of nitric oxide (NO) in the gut. However, so far, the influence of NO on the human gut microbiota has not been characterized. In this study, we used in vitro fermentation systems with human fecal samples to understand the effect of NO on the microbiota: NO modified the microbial composition and its functionality. High NO concentration depleted the microbiota of beneficial butyrate-producing species and favored potentially deleterious species (E. coli, E. faecalis, and P. mirabilis), which we showed can sustain high NO concentrations. Our work shows that NO may participate in the vicious circle of inflammation, leading to detrimental and irreversible consequences on human health. |
format | Online Article Text |
id | pubmed-8547463 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-85474632021-10-27 Nitric Oxide Impacts Human Gut Microbiota Diversity and Functionalities Leclerc, Marion Bedu-Ferrari, Cassandre Etienne-Mesmin, Lucie Mariadassou, Mahendra Lebreuilly, Lucie Tran, Seav-Ly Brazeau, Laurence Mayeur, Camille Delmas, Julien Rué, Olivier Denis, Sylvain Blanquet-Diot, Stéphanie Ramarao, Nalini mSystems Research Article The disruption of gut microbiota homeostasis has been associated with numerous diseases and with a disproportionate inflammatory response, including overproduction of nitric oxide (NO) in the intestinal lumen. However, the influence of NO on the human gut microbiota has not been well characterized yet. We used in vitro fermentation systems inoculated with human fecal samples to monitor the effect of repetitive NO pulses on the gut microbiota. NO exposure increased the redox potential and modified the fermentation profile and gas production. The overall metabolome was modified, reflecting less strict anaerobic conditions and shifts in amino acid and nitrogen metabolism. NO exposure led to a microbial shift in diversity with a decrease in Clostridium leptum group and Faecalibacterium prausnitzii biomass and an increased abundance of the Dialister genus. Escherichia coli, Enterococcus faecalis, and Proteus mirabilis operational taxonomic unit abundance increased, and strains from those species isolated after NO stress showed resistance to high NO concentrations. As a whole, NO quickly changed microbial fermentations, functions, and composition in a pulse- and dose-dependent manner. NO could shift, over time, the trophic chain to conditions that are unfavorable for strict anaerobic microbial processes, implying that a prolonged or uncontrolled inflammation has detrimental and irreversible consequences on the human microbiome. IMPORTANCE Gut microbiota dysbiosis has been associated with inflammatory diseases. The human inflammatory response leads to an overproduction of nitric oxide (NO) in the gut. However, so far, the influence of NO on the human gut microbiota has not been characterized. In this study, we used in vitro fermentation systems with human fecal samples to understand the effect of NO on the microbiota: NO modified the microbial composition and its functionality. High NO concentration depleted the microbiota of beneficial butyrate-producing species and favored potentially deleterious species (E. coli, E. faecalis, and P. mirabilis), which we showed can sustain high NO concentrations. Our work shows that NO may participate in the vicious circle of inflammation, leading to detrimental and irreversible consequences on human health. American Society for Microbiology 2021-09-14 /pmc/articles/PMC8547463/ /pubmed/34519530 http://dx.doi.org/10.1128/mSystems.00558-21 Text en Copyright © 2021 Leclerc et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Leclerc, Marion Bedu-Ferrari, Cassandre Etienne-Mesmin, Lucie Mariadassou, Mahendra Lebreuilly, Lucie Tran, Seav-Ly Brazeau, Laurence Mayeur, Camille Delmas, Julien Rué, Olivier Denis, Sylvain Blanquet-Diot, Stéphanie Ramarao, Nalini Nitric Oxide Impacts Human Gut Microbiota Diversity and Functionalities |
title | Nitric Oxide Impacts Human Gut Microbiota Diversity and Functionalities |
title_full | Nitric Oxide Impacts Human Gut Microbiota Diversity and Functionalities |
title_fullStr | Nitric Oxide Impacts Human Gut Microbiota Diversity and Functionalities |
title_full_unstemmed | Nitric Oxide Impacts Human Gut Microbiota Diversity and Functionalities |
title_short | Nitric Oxide Impacts Human Gut Microbiota Diversity and Functionalities |
title_sort | nitric oxide impacts human gut microbiota diversity and functionalities |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547463/ https://www.ncbi.nlm.nih.gov/pubmed/34519530 http://dx.doi.org/10.1128/mSystems.00558-21 |
work_keys_str_mv | AT leclercmarion nitricoxideimpactshumangutmicrobiotadiversityandfunctionalities AT beduferraricassandre nitricoxideimpactshumangutmicrobiotadiversityandfunctionalities AT etiennemesminlucie nitricoxideimpactshumangutmicrobiotadiversityandfunctionalities AT mariadassoumahendra nitricoxideimpactshumangutmicrobiotadiversityandfunctionalities AT lebreuillylucie nitricoxideimpactshumangutmicrobiotadiversityandfunctionalities AT transeavly nitricoxideimpactshumangutmicrobiotadiversityandfunctionalities AT brazeaulaurence nitricoxideimpactshumangutmicrobiotadiversityandfunctionalities AT mayeurcamille nitricoxideimpactshumangutmicrobiotadiversityandfunctionalities AT delmasjulien nitricoxideimpactshumangutmicrobiotadiversityandfunctionalities AT rueolivier nitricoxideimpactshumangutmicrobiotadiversityandfunctionalities AT denissylvain nitricoxideimpactshumangutmicrobiotadiversityandfunctionalities AT blanquetdiotstephanie nitricoxideimpactshumangutmicrobiotadiversityandfunctionalities AT ramaraonalini nitricoxideimpactshumangutmicrobiotadiversityandfunctionalities |