Cargando…

BiG-MAP: an Automated Pipeline To Profile Metabolic Gene Cluster Abundance and Expression in Microbiomes

Microbial gene clusters encoding the biosynthesis of primary and secondary metabolites play key roles in shaping microbial ecosystems and driving microbiome-associated phenotypes. Although effective approaches exist to evaluate the metabolic potential of such bacteria through identification of these...

Descripción completa

Detalles Bibliográficos
Autores principales: Pascal Andreu, Victória, Augustijn, Hannah E., van den Berg, Koen, van der Hooft, Justin J. J., Fischbach, Michael A., Medema, Marnix H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547482/
https://www.ncbi.nlm.nih.gov/pubmed/34581602
http://dx.doi.org/10.1128/mSystems.00937-21
_version_ 1784590389813968896
author Pascal Andreu, Victória
Augustijn, Hannah E.
van den Berg, Koen
van der Hooft, Justin J. J.
Fischbach, Michael A.
Medema, Marnix H.
author_facet Pascal Andreu, Victória
Augustijn, Hannah E.
van den Berg, Koen
van der Hooft, Justin J. J.
Fischbach, Michael A.
Medema, Marnix H.
author_sort Pascal Andreu, Victória
collection PubMed
description Microbial gene clusters encoding the biosynthesis of primary and secondary metabolites play key roles in shaping microbial ecosystems and driving microbiome-associated phenotypes. Although effective approaches exist to evaluate the metabolic potential of such bacteria through identification of these metabolic gene clusters in their genomes, no automated pipelines exist to profile the abundance and expression levels of such gene clusters in microbiome samples to generate hypotheses about their functional roles, and to find associations with phenotypes of interest. Here, we describe BiG-MAP, a bioinformatic tool to profile abundance and expression levels of gene clusters across metagenomic and metatranscriptomic data and evaluate their differential abundance and expression under different conditions. To illustrate its usefulness, we analyzed 96 metagenomic samples from healthy and caries-associated human oral microbiome samples and identified 252 gene clusters, including unreported ones, that were significantly more abundant in either phenotype. Among them, we found the muc operon, a gene cluster known to be associated with tooth decay. Additionally, we found a putative reuterin biosynthetic gene cluster from a Streptococcus strain to be enriched but not exclusively found in healthy samples; metabolomic data from the same samples showed masses with fragmentation patterns consistent with (poly)acrolein, which is known to spontaneously form from the products of the reuterin pathway and has been previously shown to inhibit pathogenic Streptococcus mutans strains. Thus, we show how BiG-MAP can be used to generate new hypotheses on potential drivers of microbiome-associated phenotypes and prioritize the experimental characterization of relevant gene clusters that may mediate them. IMPORTANCE Microbes play an increasingly recognized role in determining host-associated phenotypes by producing small molecules that interact with other microorganisms or host cells. The production of these molecules is often encoded in syntenic genomic regions, also known as gene clusters. With the increasing numbers of (multi)omics data sets that can help in understanding complex ecosystems at a much deeper level, there is a need to create tools that can automate the process of analyzing these gene clusters across omics data sets. This report presents a new software tool called BiG-MAP, which allows assessing gene cluster abundance and expression in microbiome samples using metagenomic and metatranscriptomic data. Here, we describe the tool and its functionalities, as well as its validation using a mock community. Finally, using an oral microbiome data set, we show how it can be used to generate hypotheses regarding the functional roles of gene clusters in mediating host phenotypes.
format Online
Article
Text
id pubmed-8547482
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-85474822021-10-27 BiG-MAP: an Automated Pipeline To Profile Metabolic Gene Cluster Abundance and Expression in Microbiomes Pascal Andreu, Victória Augustijn, Hannah E. van den Berg, Koen van der Hooft, Justin J. J. Fischbach, Michael A. Medema, Marnix H. mSystems Methods and Protocols Microbial gene clusters encoding the biosynthesis of primary and secondary metabolites play key roles in shaping microbial ecosystems and driving microbiome-associated phenotypes. Although effective approaches exist to evaluate the metabolic potential of such bacteria through identification of these metabolic gene clusters in their genomes, no automated pipelines exist to profile the abundance and expression levels of such gene clusters in microbiome samples to generate hypotheses about their functional roles, and to find associations with phenotypes of interest. Here, we describe BiG-MAP, a bioinformatic tool to profile abundance and expression levels of gene clusters across metagenomic and metatranscriptomic data and evaluate their differential abundance and expression under different conditions. To illustrate its usefulness, we analyzed 96 metagenomic samples from healthy and caries-associated human oral microbiome samples and identified 252 gene clusters, including unreported ones, that were significantly more abundant in either phenotype. Among them, we found the muc operon, a gene cluster known to be associated with tooth decay. Additionally, we found a putative reuterin biosynthetic gene cluster from a Streptococcus strain to be enriched but not exclusively found in healthy samples; metabolomic data from the same samples showed masses with fragmentation patterns consistent with (poly)acrolein, which is known to spontaneously form from the products of the reuterin pathway and has been previously shown to inhibit pathogenic Streptococcus mutans strains. Thus, we show how BiG-MAP can be used to generate new hypotheses on potential drivers of microbiome-associated phenotypes and prioritize the experimental characterization of relevant gene clusters that may mediate them. IMPORTANCE Microbes play an increasingly recognized role in determining host-associated phenotypes by producing small molecules that interact with other microorganisms or host cells. The production of these molecules is often encoded in syntenic genomic regions, also known as gene clusters. With the increasing numbers of (multi)omics data sets that can help in understanding complex ecosystems at a much deeper level, there is a need to create tools that can automate the process of analyzing these gene clusters across omics data sets. This report presents a new software tool called BiG-MAP, which allows assessing gene cluster abundance and expression in microbiome samples using metagenomic and metatranscriptomic data. Here, we describe the tool and its functionalities, as well as its validation using a mock community. Finally, using an oral microbiome data set, we show how it can be used to generate hypotheses regarding the functional roles of gene clusters in mediating host phenotypes. American Society for Microbiology 2021-09-28 /pmc/articles/PMC8547482/ /pubmed/34581602 http://dx.doi.org/10.1128/mSystems.00937-21 Text en Copyright © 2021 Pascal Andreu et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Methods and Protocols
Pascal Andreu, Victória
Augustijn, Hannah E.
van den Berg, Koen
van der Hooft, Justin J. J.
Fischbach, Michael A.
Medema, Marnix H.
BiG-MAP: an Automated Pipeline To Profile Metabolic Gene Cluster Abundance and Expression in Microbiomes
title BiG-MAP: an Automated Pipeline To Profile Metabolic Gene Cluster Abundance and Expression in Microbiomes
title_full BiG-MAP: an Automated Pipeline To Profile Metabolic Gene Cluster Abundance and Expression in Microbiomes
title_fullStr BiG-MAP: an Automated Pipeline To Profile Metabolic Gene Cluster Abundance and Expression in Microbiomes
title_full_unstemmed BiG-MAP: an Automated Pipeline To Profile Metabolic Gene Cluster Abundance and Expression in Microbiomes
title_short BiG-MAP: an Automated Pipeline To Profile Metabolic Gene Cluster Abundance and Expression in Microbiomes
title_sort big-map: an automated pipeline to profile metabolic gene cluster abundance and expression in microbiomes
topic Methods and Protocols
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547482/
https://www.ncbi.nlm.nih.gov/pubmed/34581602
http://dx.doi.org/10.1128/mSystems.00937-21
work_keys_str_mv AT pascalandreuvictoria bigmapanautomatedpipelinetoprofilemetabolicgeneclusterabundanceandexpressioninmicrobiomes
AT augustijnhannahe bigmapanautomatedpipelinetoprofilemetabolicgeneclusterabundanceandexpressioninmicrobiomes
AT vandenbergkoen bigmapanautomatedpipelinetoprofilemetabolicgeneclusterabundanceandexpressioninmicrobiomes
AT vanderhooftjustinjj bigmapanautomatedpipelinetoprofilemetabolicgeneclusterabundanceandexpressioninmicrobiomes
AT fischbachmichaela bigmapanautomatedpipelinetoprofilemetabolicgeneclusterabundanceandexpressioninmicrobiomes
AT medemamarnixh bigmapanautomatedpipelinetoprofilemetabolicgeneclusterabundanceandexpressioninmicrobiomes