Cargando…

Fitbeat: COVID-19 estimation based on wristband heart rate using a contrastive convolutional auto-encoder

This study proposes a contrastive convolutional auto-encoder (contrastive CAE), a combined architecture of an auto-encoder and contrastive loss, to identify individuals with suspected COVID-19 infection using heart-rate data from participants with multiple sclerosis (MS) in the ongoing RADAR-CNS mHe...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Shuo, Han, Jing, Puyal, Estela Laporta, Kontaxis, Spyridon, Sun, Shaoxiong, Locatelli, Patrick, Dineley, Judith, Pokorny, Florian B., Costa, Gloria Dalla, Leocani, Letizia, Guerrero, Ana Isabel, Nos, Carlos, Zabalza, Ana, Sørensen, Per Soelberg, Buron, Mathias, Magyari, Melinda, Ranjan, Yatharth, Rashid, Zulqarnain, Conde, Pauline, Stewart, Callum, Folarin, Amos A, Dobson, Richard JB, Bailón, Raquel, Vairavan, Srinivasan, Cummins, Nicholas, Narayan, Vaibhav A, Hotopf, Matthew, Comi, Giancarlo, Schuller, Björn, Consortium, RADAR-CNS
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547790/
https://www.ncbi.nlm.nih.gov/pubmed/34720200
http://dx.doi.org/10.1016/j.patcog.2021.108403
_version_ 1784590448473407488
author Liu, Shuo
Han, Jing
Puyal, Estela Laporta
Kontaxis, Spyridon
Sun, Shaoxiong
Locatelli, Patrick
Dineley, Judith
Pokorny, Florian B.
Costa, Gloria Dalla
Leocani, Letizia
Guerrero, Ana Isabel
Nos, Carlos
Zabalza, Ana
Sørensen, Per Soelberg
Buron, Mathias
Magyari, Melinda
Ranjan, Yatharth
Rashid, Zulqarnain
Conde, Pauline
Stewart, Callum
Folarin, Amos A
Dobson, Richard JB
Bailón, Raquel
Vairavan, Srinivasan
Cummins, Nicholas
Narayan, Vaibhav A
Hotopf, Matthew
Comi, Giancarlo
Schuller, Björn
Consortium, RADAR-CNS
author_facet Liu, Shuo
Han, Jing
Puyal, Estela Laporta
Kontaxis, Spyridon
Sun, Shaoxiong
Locatelli, Patrick
Dineley, Judith
Pokorny, Florian B.
Costa, Gloria Dalla
Leocani, Letizia
Guerrero, Ana Isabel
Nos, Carlos
Zabalza, Ana
Sørensen, Per Soelberg
Buron, Mathias
Magyari, Melinda
Ranjan, Yatharth
Rashid, Zulqarnain
Conde, Pauline
Stewart, Callum
Folarin, Amos A
Dobson, Richard JB
Bailón, Raquel
Vairavan, Srinivasan
Cummins, Nicholas
Narayan, Vaibhav A
Hotopf, Matthew
Comi, Giancarlo
Schuller, Björn
Consortium, RADAR-CNS
author_sort Liu, Shuo
collection PubMed
description This study proposes a contrastive convolutional auto-encoder (contrastive CAE), a combined architecture of an auto-encoder and contrastive loss, to identify individuals with suspected COVID-19 infection using heart-rate data from participants with multiple sclerosis (MS) in the ongoing RADAR-CNS mHealth research project. Heart-rate data was remotely collected using a Fitbit wristband. COVID-19 infection was either confirmed through a positive swab test, or inferred through a self-reported set of recognised symptoms of the virus. The contrastive CAE outperforms a conventional convolutional neural network (CNN), a long short-term memory (LSTM) model, and a convolutional auto-encoder without contrastive loss (CAE). On a test set of 19 participants with MS with reported symptoms of COVID-19, each one paired with a participant with MS with no COVID-19 symptoms, the contrastive CAE achieves an unweighted average recall of [Formula: see text] , a sensitivity of [Formula: see text] and a specificity of [Formula: see text] , an area under the receiver operating characteristic curve (AUC-ROC) of 0.944, indicating a maximum successful detection of symptoms in the given heart rate measurement period, whilst at the same time keeping a low false alarm rate.
format Online
Article
Text
id pubmed-8547790
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier Ltd.
record_format MEDLINE/PubMed
spelling pubmed-85477902021-10-27 Fitbeat: COVID-19 estimation based on wristband heart rate using a contrastive convolutional auto-encoder Liu, Shuo Han, Jing Puyal, Estela Laporta Kontaxis, Spyridon Sun, Shaoxiong Locatelli, Patrick Dineley, Judith Pokorny, Florian B. Costa, Gloria Dalla Leocani, Letizia Guerrero, Ana Isabel Nos, Carlos Zabalza, Ana Sørensen, Per Soelberg Buron, Mathias Magyari, Melinda Ranjan, Yatharth Rashid, Zulqarnain Conde, Pauline Stewart, Callum Folarin, Amos A Dobson, Richard JB Bailón, Raquel Vairavan, Srinivasan Cummins, Nicholas Narayan, Vaibhav A Hotopf, Matthew Comi, Giancarlo Schuller, Björn Consortium, RADAR-CNS Pattern Recognit Article This study proposes a contrastive convolutional auto-encoder (contrastive CAE), a combined architecture of an auto-encoder and contrastive loss, to identify individuals with suspected COVID-19 infection using heart-rate data from participants with multiple sclerosis (MS) in the ongoing RADAR-CNS mHealth research project. Heart-rate data was remotely collected using a Fitbit wristband. COVID-19 infection was either confirmed through a positive swab test, or inferred through a self-reported set of recognised symptoms of the virus. The contrastive CAE outperforms a conventional convolutional neural network (CNN), a long short-term memory (LSTM) model, and a convolutional auto-encoder without contrastive loss (CAE). On a test set of 19 participants with MS with reported symptoms of COVID-19, each one paired with a participant with MS with no COVID-19 symptoms, the contrastive CAE achieves an unweighted average recall of [Formula: see text] , a sensitivity of [Formula: see text] and a specificity of [Formula: see text] , an area under the receiver operating characteristic curve (AUC-ROC) of 0.944, indicating a maximum successful detection of symptoms in the given heart rate measurement period, whilst at the same time keeping a low false alarm rate. Elsevier Ltd. 2022-03 2021-10-26 /pmc/articles/PMC8547790/ /pubmed/34720200 http://dx.doi.org/10.1016/j.patcog.2021.108403 Text en © 2021 Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Article
Liu, Shuo
Han, Jing
Puyal, Estela Laporta
Kontaxis, Spyridon
Sun, Shaoxiong
Locatelli, Patrick
Dineley, Judith
Pokorny, Florian B.
Costa, Gloria Dalla
Leocani, Letizia
Guerrero, Ana Isabel
Nos, Carlos
Zabalza, Ana
Sørensen, Per Soelberg
Buron, Mathias
Magyari, Melinda
Ranjan, Yatharth
Rashid, Zulqarnain
Conde, Pauline
Stewart, Callum
Folarin, Amos A
Dobson, Richard JB
Bailón, Raquel
Vairavan, Srinivasan
Cummins, Nicholas
Narayan, Vaibhav A
Hotopf, Matthew
Comi, Giancarlo
Schuller, Björn
Consortium, RADAR-CNS
Fitbeat: COVID-19 estimation based on wristband heart rate using a contrastive convolutional auto-encoder
title Fitbeat: COVID-19 estimation based on wristband heart rate using a contrastive convolutional auto-encoder
title_full Fitbeat: COVID-19 estimation based on wristband heart rate using a contrastive convolutional auto-encoder
title_fullStr Fitbeat: COVID-19 estimation based on wristband heart rate using a contrastive convolutional auto-encoder
title_full_unstemmed Fitbeat: COVID-19 estimation based on wristband heart rate using a contrastive convolutional auto-encoder
title_short Fitbeat: COVID-19 estimation based on wristband heart rate using a contrastive convolutional auto-encoder
title_sort fitbeat: covid-19 estimation based on wristband heart rate using a contrastive convolutional auto-encoder
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547790/
https://www.ncbi.nlm.nih.gov/pubmed/34720200
http://dx.doi.org/10.1016/j.patcog.2021.108403
work_keys_str_mv AT liushuo fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT hanjing fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT puyalestelalaporta fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT kontaxisspyridon fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT sunshaoxiong fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT locatellipatrick fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT dineleyjudith fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT pokornyflorianb fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT costagloriadalla fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT leocaniletizia fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT guerreroanaisabel fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT noscarlos fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT zabalzaana fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT sørensenpersoelberg fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT buronmathias fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT magyarimelinda fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT ranjanyatharth fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT rashidzulqarnain fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT condepauline fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT stewartcallum fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT folarinamosa fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT dobsonrichardjb fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT bailonraquel fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT vairavansrinivasan fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT cumminsnicholas fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT narayanvaibhava fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT hotopfmatthew fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT comigiancarlo fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT schullerbjorn fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder
AT consortiumradarcns fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder