Cargando…
Fitbeat: COVID-19 estimation based on wristband heart rate using a contrastive convolutional auto-encoder
This study proposes a contrastive convolutional auto-encoder (contrastive CAE), a combined architecture of an auto-encoder and contrastive loss, to identify individuals with suspected COVID-19 infection using heart-rate data from participants with multiple sclerosis (MS) in the ongoing RADAR-CNS mHe...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547790/ https://www.ncbi.nlm.nih.gov/pubmed/34720200 http://dx.doi.org/10.1016/j.patcog.2021.108403 |
_version_ | 1784590448473407488 |
---|---|
author | Liu, Shuo Han, Jing Puyal, Estela Laporta Kontaxis, Spyridon Sun, Shaoxiong Locatelli, Patrick Dineley, Judith Pokorny, Florian B. Costa, Gloria Dalla Leocani, Letizia Guerrero, Ana Isabel Nos, Carlos Zabalza, Ana Sørensen, Per Soelberg Buron, Mathias Magyari, Melinda Ranjan, Yatharth Rashid, Zulqarnain Conde, Pauline Stewart, Callum Folarin, Amos A Dobson, Richard JB Bailón, Raquel Vairavan, Srinivasan Cummins, Nicholas Narayan, Vaibhav A Hotopf, Matthew Comi, Giancarlo Schuller, Björn Consortium, RADAR-CNS |
author_facet | Liu, Shuo Han, Jing Puyal, Estela Laporta Kontaxis, Spyridon Sun, Shaoxiong Locatelli, Patrick Dineley, Judith Pokorny, Florian B. Costa, Gloria Dalla Leocani, Letizia Guerrero, Ana Isabel Nos, Carlos Zabalza, Ana Sørensen, Per Soelberg Buron, Mathias Magyari, Melinda Ranjan, Yatharth Rashid, Zulqarnain Conde, Pauline Stewart, Callum Folarin, Amos A Dobson, Richard JB Bailón, Raquel Vairavan, Srinivasan Cummins, Nicholas Narayan, Vaibhav A Hotopf, Matthew Comi, Giancarlo Schuller, Björn Consortium, RADAR-CNS |
author_sort | Liu, Shuo |
collection | PubMed |
description | This study proposes a contrastive convolutional auto-encoder (contrastive CAE), a combined architecture of an auto-encoder and contrastive loss, to identify individuals with suspected COVID-19 infection using heart-rate data from participants with multiple sclerosis (MS) in the ongoing RADAR-CNS mHealth research project. Heart-rate data was remotely collected using a Fitbit wristband. COVID-19 infection was either confirmed through a positive swab test, or inferred through a self-reported set of recognised symptoms of the virus. The contrastive CAE outperforms a conventional convolutional neural network (CNN), a long short-term memory (LSTM) model, and a convolutional auto-encoder without contrastive loss (CAE). On a test set of 19 participants with MS with reported symptoms of COVID-19, each one paired with a participant with MS with no COVID-19 symptoms, the contrastive CAE achieves an unweighted average recall of [Formula: see text] , a sensitivity of [Formula: see text] and a specificity of [Formula: see text] , an area under the receiver operating characteristic curve (AUC-ROC) of 0.944, indicating a maximum successful detection of symptoms in the given heart rate measurement period, whilst at the same time keeping a low false alarm rate. |
format | Online Article Text |
id | pubmed-8547790 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85477902021-10-27 Fitbeat: COVID-19 estimation based on wristband heart rate using a contrastive convolutional auto-encoder Liu, Shuo Han, Jing Puyal, Estela Laporta Kontaxis, Spyridon Sun, Shaoxiong Locatelli, Patrick Dineley, Judith Pokorny, Florian B. Costa, Gloria Dalla Leocani, Letizia Guerrero, Ana Isabel Nos, Carlos Zabalza, Ana Sørensen, Per Soelberg Buron, Mathias Magyari, Melinda Ranjan, Yatharth Rashid, Zulqarnain Conde, Pauline Stewart, Callum Folarin, Amos A Dobson, Richard JB Bailón, Raquel Vairavan, Srinivasan Cummins, Nicholas Narayan, Vaibhav A Hotopf, Matthew Comi, Giancarlo Schuller, Björn Consortium, RADAR-CNS Pattern Recognit Article This study proposes a contrastive convolutional auto-encoder (contrastive CAE), a combined architecture of an auto-encoder and contrastive loss, to identify individuals with suspected COVID-19 infection using heart-rate data from participants with multiple sclerosis (MS) in the ongoing RADAR-CNS mHealth research project. Heart-rate data was remotely collected using a Fitbit wristband. COVID-19 infection was either confirmed through a positive swab test, or inferred through a self-reported set of recognised symptoms of the virus. The contrastive CAE outperforms a conventional convolutional neural network (CNN), a long short-term memory (LSTM) model, and a convolutional auto-encoder without contrastive loss (CAE). On a test set of 19 participants with MS with reported symptoms of COVID-19, each one paired with a participant with MS with no COVID-19 symptoms, the contrastive CAE achieves an unweighted average recall of [Formula: see text] , a sensitivity of [Formula: see text] and a specificity of [Formula: see text] , an area under the receiver operating characteristic curve (AUC-ROC) of 0.944, indicating a maximum successful detection of symptoms in the given heart rate measurement period, whilst at the same time keeping a low false alarm rate. Elsevier Ltd. 2022-03 2021-10-26 /pmc/articles/PMC8547790/ /pubmed/34720200 http://dx.doi.org/10.1016/j.patcog.2021.108403 Text en © 2021 Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Liu, Shuo Han, Jing Puyal, Estela Laporta Kontaxis, Spyridon Sun, Shaoxiong Locatelli, Patrick Dineley, Judith Pokorny, Florian B. Costa, Gloria Dalla Leocani, Letizia Guerrero, Ana Isabel Nos, Carlos Zabalza, Ana Sørensen, Per Soelberg Buron, Mathias Magyari, Melinda Ranjan, Yatharth Rashid, Zulqarnain Conde, Pauline Stewart, Callum Folarin, Amos A Dobson, Richard JB Bailón, Raquel Vairavan, Srinivasan Cummins, Nicholas Narayan, Vaibhav A Hotopf, Matthew Comi, Giancarlo Schuller, Björn Consortium, RADAR-CNS Fitbeat: COVID-19 estimation based on wristband heart rate using a contrastive convolutional auto-encoder |
title | Fitbeat: COVID-19 estimation based on wristband heart rate using a contrastive convolutional auto-encoder |
title_full | Fitbeat: COVID-19 estimation based on wristband heart rate using a contrastive convolutional auto-encoder |
title_fullStr | Fitbeat: COVID-19 estimation based on wristband heart rate using a contrastive convolutional auto-encoder |
title_full_unstemmed | Fitbeat: COVID-19 estimation based on wristband heart rate using a contrastive convolutional auto-encoder |
title_short | Fitbeat: COVID-19 estimation based on wristband heart rate using a contrastive convolutional auto-encoder |
title_sort | fitbeat: covid-19 estimation based on wristband heart rate using a contrastive convolutional auto-encoder |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547790/ https://www.ncbi.nlm.nih.gov/pubmed/34720200 http://dx.doi.org/10.1016/j.patcog.2021.108403 |
work_keys_str_mv | AT liushuo fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT hanjing fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT puyalestelalaporta fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT kontaxisspyridon fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT sunshaoxiong fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT locatellipatrick fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT dineleyjudith fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT pokornyflorianb fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT costagloriadalla fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT leocaniletizia fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT guerreroanaisabel fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT noscarlos fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT zabalzaana fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT sørensenpersoelberg fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT buronmathias fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT magyarimelinda fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT ranjanyatharth fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT rashidzulqarnain fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT condepauline fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT stewartcallum fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT folarinamosa fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT dobsonrichardjb fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT bailonraquel fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT vairavansrinivasan fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT cumminsnicholas fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT narayanvaibhava fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT hotopfmatthew fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT comigiancarlo fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT schullerbjorn fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder AT consortiumradarcns fitbeatcovid19estimationbasedonwristbandheartrateusingacontrastiveconvolutionalautoencoder |