Cargando…

Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer

Recent omics analyses of human biofluids provide opportunities to probe selected species of biomolecules for disease diagnostics. Fourier-transform infrared (FTIR) spectroscopy investigates the full repertoire of molecular species within a sample at once. Here, we present a multi-institutional study...

Descripción completa

Detalles Bibliográficos
Autores principales: Huber, Marinus, Kepesidis, Kosmas V, Voronina, Liudmila, Fleischmann, Frank, Fill, Ernst, Hermann, Jacqueline, Koch, Ina, Milger-Kneidinger, Katrin, Kolben, Thomas, Schulz, Gerald B, Jokisch, Friedrich, Behr, Jürgen, Harbeck, Nadia, Reiser, Maximilian, Stief, Christian, Krausz, Ferenc, Zigman, Mihaela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547961/
https://www.ncbi.nlm.nih.gov/pubmed/34696827
http://dx.doi.org/10.7554/eLife.68758
_version_ 1784590482890817536
author Huber, Marinus
Kepesidis, Kosmas V
Voronina, Liudmila
Fleischmann, Frank
Fill, Ernst
Hermann, Jacqueline
Koch, Ina
Milger-Kneidinger, Katrin
Kolben, Thomas
Schulz, Gerald B
Jokisch, Friedrich
Behr, Jürgen
Harbeck, Nadia
Reiser, Maximilian
Stief, Christian
Krausz, Ferenc
Zigman, Mihaela
author_facet Huber, Marinus
Kepesidis, Kosmas V
Voronina, Liudmila
Fleischmann, Frank
Fill, Ernst
Hermann, Jacqueline
Koch, Ina
Milger-Kneidinger, Katrin
Kolben, Thomas
Schulz, Gerald B
Jokisch, Friedrich
Behr, Jürgen
Harbeck, Nadia
Reiser, Maximilian
Stief, Christian
Krausz, Ferenc
Zigman, Mihaela
author_sort Huber, Marinus
collection PubMed
description Recent omics analyses of human biofluids provide opportunities to probe selected species of biomolecules for disease diagnostics. Fourier-transform infrared (FTIR) spectroscopy investigates the full repertoire of molecular species within a sample at once. Here, we present a multi-institutional study in which we analysed infrared fingerprints of plasma and serum samples from 1639 individuals with different solid tumours and carefully matched symptomatic and non-symptomatic reference individuals. Focusing on breast, bladder, prostate, and lung cancer, we find that infrared molecular fingerprinting is capable of detecting cancer: training a support vector machine algorithm allowed us to obtain binary classification performance in the range of 0.78–0.89 (area under the receiver operating characteristic curve [AUC]), with a clear correlation between AUC and tumour load. Intriguingly, we find that the spectral signatures differ between different cancer types. This study lays the foundation for high-throughput onco-IR-phenotyping of four common cancers, providing a cost-effective, complementary analytical tool for disease recognition.
format Online
Article
Text
id pubmed-8547961
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-85479612021-10-27 Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer Huber, Marinus Kepesidis, Kosmas V Voronina, Liudmila Fleischmann, Frank Fill, Ernst Hermann, Jacqueline Koch, Ina Milger-Kneidinger, Katrin Kolben, Thomas Schulz, Gerald B Jokisch, Friedrich Behr, Jürgen Harbeck, Nadia Reiser, Maximilian Stief, Christian Krausz, Ferenc Zigman, Mihaela eLife Medicine Recent omics analyses of human biofluids provide opportunities to probe selected species of biomolecules for disease diagnostics. Fourier-transform infrared (FTIR) spectroscopy investigates the full repertoire of molecular species within a sample at once. Here, we present a multi-institutional study in which we analysed infrared fingerprints of plasma and serum samples from 1639 individuals with different solid tumours and carefully matched symptomatic and non-symptomatic reference individuals. Focusing on breast, bladder, prostate, and lung cancer, we find that infrared molecular fingerprinting is capable of detecting cancer: training a support vector machine algorithm allowed us to obtain binary classification performance in the range of 0.78–0.89 (area under the receiver operating characteristic curve [AUC]), with a clear correlation between AUC and tumour load. Intriguingly, we find that the spectral signatures differ between different cancer types. This study lays the foundation for high-throughput onco-IR-phenotyping of four common cancers, providing a cost-effective, complementary analytical tool for disease recognition. eLife Sciences Publications, Ltd 2021-10-26 /pmc/articles/PMC8547961/ /pubmed/34696827 http://dx.doi.org/10.7554/eLife.68758 Text en © 2021, Huber et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Medicine
Huber, Marinus
Kepesidis, Kosmas V
Voronina, Liudmila
Fleischmann, Frank
Fill, Ernst
Hermann, Jacqueline
Koch, Ina
Milger-Kneidinger, Katrin
Kolben, Thomas
Schulz, Gerald B
Jokisch, Friedrich
Behr, Jürgen
Harbeck, Nadia
Reiser, Maximilian
Stief, Christian
Krausz, Ferenc
Zigman, Mihaela
Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer
title Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer
title_full Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer
title_fullStr Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer
title_full_unstemmed Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer
title_short Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer
title_sort infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer
topic Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547961/
https://www.ncbi.nlm.nih.gov/pubmed/34696827
http://dx.doi.org/10.7554/eLife.68758
work_keys_str_mv AT hubermarinus infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT kepesidiskosmasv infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT voroninaliudmila infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT fleischmannfrank infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT fillernst infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT hermannjacqueline infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT kochina infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT milgerkneidingerkatrin infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT kolbenthomas infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT schulzgeraldb infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT jokischfriedrich infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT behrjurgen infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT harbecknadia infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT reisermaximilian infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT stiefchristian infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT krauszferenc infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT zigmanmihaela infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer