Cargando…

Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites

Most eukaryotic cells retain a mitochondrial fatty acid synthesis (FASII) pathway whose acyl carrier protein (mACP) and 4-phosphopantetheine (Ppant) prosthetic group provide a soluble scaffold for acyl chain synthesis and biochemically couple FASII activity to mitochondrial electron transport chain...

Descripción completa

Detalles Bibliográficos
Autores principales: Falekun, Seyi, Sepulveda, Jaime, Jami-Alahmadi, Yasaman, Park, Hahnbeom, Wohlschlegel, James A, Sigala, Paul A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547962/
https://www.ncbi.nlm.nih.gov/pubmed/34612205
http://dx.doi.org/10.7554/eLife.71636
_version_ 1784590483126747136
author Falekun, Seyi
Sepulveda, Jaime
Jami-Alahmadi, Yasaman
Park, Hahnbeom
Wohlschlegel, James A
Sigala, Paul A
author_facet Falekun, Seyi
Sepulveda, Jaime
Jami-Alahmadi, Yasaman
Park, Hahnbeom
Wohlschlegel, James A
Sigala, Paul A
author_sort Falekun, Seyi
collection PubMed
description Most eukaryotic cells retain a mitochondrial fatty acid synthesis (FASII) pathway whose acyl carrier protein (mACP) and 4-phosphopantetheine (Ppant) prosthetic group provide a soluble scaffold for acyl chain synthesis and biochemically couple FASII activity to mitochondrial electron transport chain (ETC) assembly and Fe-S cluster biogenesis. In contrast, the mitochondrion of Plasmodium falciparum malaria parasites lacks FASII enzymes yet curiously retains a divergent mACP lacking a Ppant group. We report that ligand-dependent knockdown of mACP is lethal to parasites, indicating an essential FASII-independent function. Decyl-ubiquinone rescues parasites temporarily from death, suggesting a dominant dysfunction of the mitochondrial ETC. Biochemical studies reveal that Plasmodium mACP binds and stabilizes the Isd11-Nfs1 complex required for Fe-S cluster biosynthesis, despite lacking the Ppant group required for this association in other eukaryotes, and knockdown of parasite mACP causes loss of Nfs1 and the Rieske Fe-S protein in ETC complex III. This work reveals that Plasmodium parasites have evolved to decouple mitochondrial Fe-S cluster biogenesis from FASII activity, and this adaptation is a shared metabolic feature of other apicomplexan pathogens, including Toxoplasma and Babesia. This discovery unveils an evolutionary driving force to retain interaction of mitochondrial Fe-S cluster biogenesis with ACP independent of its eponymous function in FASII.
format Online
Article
Text
id pubmed-8547962
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-85479622021-10-27 Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites Falekun, Seyi Sepulveda, Jaime Jami-Alahmadi, Yasaman Park, Hahnbeom Wohlschlegel, James A Sigala, Paul A eLife Biochemistry and Chemical Biology Most eukaryotic cells retain a mitochondrial fatty acid synthesis (FASII) pathway whose acyl carrier protein (mACP) and 4-phosphopantetheine (Ppant) prosthetic group provide a soluble scaffold for acyl chain synthesis and biochemically couple FASII activity to mitochondrial electron transport chain (ETC) assembly and Fe-S cluster biogenesis. In contrast, the mitochondrion of Plasmodium falciparum malaria parasites lacks FASII enzymes yet curiously retains a divergent mACP lacking a Ppant group. We report that ligand-dependent knockdown of mACP is lethal to parasites, indicating an essential FASII-independent function. Decyl-ubiquinone rescues parasites temporarily from death, suggesting a dominant dysfunction of the mitochondrial ETC. Biochemical studies reveal that Plasmodium mACP binds and stabilizes the Isd11-Nfs1 complex required for Fe-S cluster biosynthesis, despite lacking the Ppant group required for this association in other eukaryotes, and knockdown of parasite mACP causes loss of Nfs1 and the Rieske Fe-S protein in ETC complex III. This work reveals that Plasmodium parasites have evolved to decouple mitochondrial Fe-S cluster biogenesis from FASII activity, and this adaptation is a shared metabolic feature of other apicomplexan pathogens, including Toxoplasma and Babesia. This discovery unveils an evolutionary driving force to retain interaction of mitochondrial Fe-S cluster biogenesis with ACP independent of its eponymous function in FASII. eLife Sciences Publications, Ltd 2021-10-06 /pmc/articles/PMC8547962/ /pubmed/34612205 http://dx.doi.org/10.7554/eLife.71636 Text en © 2021, Falekun et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Biochemistry and Chemical Biology
Falekun, Seyi
Sepulveda, Jaime
Jami-Alahmadi, Yasaman
Park, Hahnbeom
Wohlschlegel, James A
Sigala, Paul A
Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites
title Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites
title_full Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites
title_fullStr Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites
title_full_unstemmed Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites
title_short Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites
title_sort divergent acyl carrier protein decouples mitochondrial fe-s cluster biogenesis from fatty acid synthesis in malaria parasites
topic Biochemistry and Chemical Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547962/
https://www.ncbi.nlm.nih.gov/pubmed/34612205
http://dx.doi.org/10.7554/eLife.71636
work_keys_str_mv AT falekunseyi divergentacylcarrierproteindecouplesmitochondrialfesclusterbiogenesisfromfattyacidsynthesisinmalariaparasites
AT sepulvedajaime divergentacylcarrierproteindecouplesmitochondrialfesclusterbiogenesisfromfattyacidsynthesisinmalariaparasites
AT jamialahmadiyasaman divergentacylcarrierproteindecouplesmitochondrialfesclusterbiogenesisfromfattyacidsynthesisinmalariaparasites
AT parkhahnbeom divergentacylcarrierproteindecouplesmitochondrialfesclusterbiogenesisfromfattyacidsynthesisinmalariaparasites
AT wohlschlegeljamesa divergentacylcarrierproteindecouplesmitochondrialfesclusterbiogenesisfromfattyacidsynthesisinmalariaparasites
AT sigalapaula divergentacylcarrierproteindecouplesmitochondrialfesclusterbiogenesisfromfattyacidsynthesisinmalariaparasites