Cargando…
Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites
Most eukaryotic cells retain a mitochondrial fatty acid synthesis (FASII) pathway whose acyl carrier protein (mACP) and 4-phosphopantetheine (Ppant) prosthetic group provide a soluble scaffold for acyl chain synthesis and biochemically couple FASII activity to mitochondrial electron transport chain...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547962/ https://www.ncbi.nlm.nih.gov/pubmed/34612205 http://dx.doi.org/10.7554/eLife.71636 |
_version_ | 1784590483126747136 |
---|---|
author | Falekun, Seyi Sepulveda, Jaime Jami-Alahmadi, Yasaman Park, Hahnbeom Wohlschlegel, James A Sigala, Paul A |
author_facet | Falekun, Seyi Sepulveda, Jaime Jami-Alahmadi, Yasaman Park, Hahnbeom Wohlschlegel, James A Sigala, Paul A |
author_sort | Falekun, Seyi |
collection | PubMed |
description | Most eukaryotic cells retain a mitochondrial fatty acid synthesis (FASII) pathway whose acyl carrier protein (mACP) and 4-phosphopantetheine (Ppant) prosthetic group provide a soluble scaffold for acyl chain synthesis and biochemically couple FASII activity to mitochondrial electron transport chain (ETC) assembly and Fe-S cluster biogenesis. In contrast, the mitochondrion of Plasmodium falciparum malaria parasites lacks FASII enzymes yet curiously retains a divergent mACP lacking a Ppant group. We report that ligand-dependent knockdown of mACP is lethal to parasites, indicating an essential FASII-independent function. Decyl-ubiquinone rescues parasites temporarily from death, suggesting a dominant dysfunction of the mitochondrial ETC. Biochemical studies reveal that Plasmodium mACP binds and stabilizes the Isd11-Nfs1 complex required for Fe-S cluster biosynthesis, despite lacking the Ppant group required for this association in other eukaryotes, and knockdown of parasite mACP causes loss of Nfs1 and the Rieske Fe-S protein in ETC complex III. This work reveals that Plasmodium parasites have evolved to decouple mitochondrial Fe-S cluster biogenesis from FASII activity, and this adaptation is a shared metabolic feature of other apicomplexan pathogens, including Toxoplasma and Babesia. This discovery unveils an evolutionary driving force to retain interaction of mitochondrial Fe-S cluster biogenesis with ACP independent of its eponymous function in FASII. |
format | Online Article Text |
id | pubmed-8547962 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-85479622021-10-27 Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites Falekun, Seyi Sepulveda, Jaime Jami-Alahmadi, Yasaman Park, Hahnbeom Wohlschlegel, James A Sigala, Paul A eLife Biochemistry and Chemical Biology Most eukaryotic cells retain a mitochondrial fatty acid synthesis (FASII) pathway whose acyl carrier protein (mACP) and 4-phosphopantetheine (Ppant) prosthetic group provide a soluble scaffold for acyl chain synthesis and biochemically couple FASII activity to mitochondrial electron transport chain (ETC) assembly and Fe-S cluster biogenesis. In contrast, the mitochondrion of Plasmodium falciparum malaria parasites lacks FASII enzymes yet curiously retains a divergent mACP lacking a Ppant group. We report that ligand-dependent knockdown of mACP is lethal to parasites, indicating an essential FASII-independent function. Decyl-ubiquinone rescues parasites temporarily from death, suggesting a dominant dysfunction of the mitochondrial ETC. Biochemical studies reveal that Plasmodium mACP binds and stabilizes the Isd11-Nfs1 complex required for Fe-S cluster biosynthesis, despite lacking the Ppant group required for this association in other eukaryotes, and knockdown of parasite mACP causes loss of Nfs1 and the Rieske Fe-S protein in ETC complex III. This work reveals that Plasmodium parasites have evolved to decouple mitochondrial Fe-S cluster biogenesis from FASII activity, and this adaptation is a shared metabolic feature of other apicomplexan pathogens, including Toxoplasma and Babesia. This discovery unveils an evolutionary driving force to retain interaction of mitochondrial Fe-S cluster biogenesis with ACP independent of its eponymous function in FASII. eLife Sciences Publications, Ltd 2021-10-06 /pmc/articles/PMC8547962/ /pubmed/34612205 http://dx.doi.org/10.7554/eLife.71636 Text en © 2021, Falekun et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Biochemistry and Chemical Biology Falekun, Seyi Sepulveda, Jaime Jami-Alahmadi, Yasaman Park, Hahnbeom Wohlschlegel, James A Sigala, Paul A Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites |
title | Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites |
title_full | Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites |
title_fullStr | Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites |
title_full_unstemmed | Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites |
title_short | Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites |
title_sort | divergent acyl carrier protein decouples mitochondrial fe-s cluster biogenesis from fatty acid synthesis in malaria parasites |
topic | Biochemistry and Chemical Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547962/ https://www.ncbi.nlm.nih.gov/pubmed/34612205 http://dx.doi.org/10.7554/eLife.71636 |
work_keys_str_mv | AT falekunseyi divergentacylcarrierproteindecouplesmitochondrialfesclusterbiogenesisfromfattyacidsynthesisinmalariaparasites AT sepulvedajaime divergentacylcarrierproteindecouplesmitochondrialfesclusterbiogenesisfromfattyacidsynthesisinmalariaparasites AT jamialahmadiyasaman divergentacylcarrierproteindecouplesmitochondrialfesclusterbiogenesisfromfattyacidsynthesisinmalariaparasites AT parkhahnbeom divergentacylcarrierproteindecouplesmitochondrialfesclusterbiogenesisfromfattyacidsynthesisinmalariaparasites AT wohlschlegeljamesa divergentacylcarrierproteindecouplesmitochondrialfesclusterbiogenesisfromfattyacidsynthesisinmalariaparasites AT sigalapaula divergentacylcarrierproteindecouplesmitochondrialfesclusterbiogenesisfromfattyacidsynthesisinmalariaparasites |