Cargando…

PER1 as a Tumor Suppressor Attenuated in the Malignant Phenotypes of Breast Cancer Cells

BACKGROUND: Circadian clock genes play a crucial role in physiological and pathological processes, and their aberrant expressions were involved in various human cancers. The objective of this study was to investigate the expression level of Period circadian regulator 1 (PER1), an important circadian...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yinfeng, Hao, Jun, Yuan, Guanli, Wei, Mengyu, Bu, Yuhui, Jin, Tingting, Ma, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547972/
https://www.ncbi.nlm.nih.gov/pubmed/34712059
http://dx.doi.org/10.2147/IJGM.S328184
_version_ 1784590485547909120
author Liu, Yinfeng
Hao, Jun
Yuan, Guanli
Wei, Mengyu
Bu, Yuhui
Jin, Tingting
Ma, Li
author_facet Liu, Yinfeng
Hao, Jun
Yuan, Guanli
Wei, Mengyu
Bu, Yuhui
Jin, Tingting
Ma, Li
author_sort Liu, Yinfeng
collection PubMed
description BACKGROUND: Circadian clock genes play a crucial role in physiological and pathological processes, and their aberrant expressions were involved in various human cancers. The objective of this study was to investigate the expression level of Period circadian regulator 1 (PER1), an important circadian clock gene, and its biological roles in the development and progression of breast cancer. METHODS: The expression level of PER1 in breast cancer samples was analyzed using the Oncomine database, and the correlation between PER1 expression and clinicopathologic parameters was assessed by bc-GenExMiner v4.5. In addition, Kaplan–Meier plotter database was used to determine the prognostic significance of PER1 expression for breast cancer patients. The expressions of PER1 in breast cancer tissues and cells were validated by Western blot. The loss-or-gain assay of PER1 was conducted to investigate the effects of its expression on cell proliferation, migration and invasion of breast cancer. The relationship between PER1 expression and epigenetic modifications was further explored by Western blot. RESULTS: The results of the bioinformatics analysis revealed that the expression level of PER1 was markedly reduced in breast cancer tissues (P<0.001), and patients with high expression of PER1 had a better overall survival (HR:0.78, 95% CI:0.63–0.97, P=0.026) and recurrence-free survival (HR:0.83, 95% CI:0.75–0.93, P=0.001) than those with low expression. The assay of gene loss-or-gain indicated that downregulation of PER1 expression markedly promoted cell proliferation, migration and invasion (P<0.05), whereas these malignant phenotypes of breast cancer cells were inhibited by PER1 overexpression (P<0.05). Further studies showed that trichostatin A (TSA), a histone deacetylase inhibitor, induced the expression of PER1 protein in breast cancer cells (P<0.05). CONCLUSION: PER1 functions as a tumor suppressor in the development and progression of breast cancer, and its expression silencing might be regulated by epigenetic modifications.
format Online
Article
Text
id pubmed-8547972
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Dove
record_format MEDLINE/PubMed
spelling pubmed-85479722021-10-27 PER1 as a Tumor Suppressor Attenuated in the Malignant Phenotypes of Breast Cancer Cells Liu, Yinfeng Hao, Jun Yuan, Guanli Wei, Mengyu Bu, Yuhui Jin, Tingting Ma, Li Int J Gen Med Original Research BACKGROUND: Circadian clock genes play a crucial role in physiological and pathological processes, and their aberrant expressions were involved in various human cancers. The objective of this study was to investigate the expression level of Period circadian regulator 1 (PER1), an important circadian clock gene, and its biological roles in the development and progression of breast cancer. METHODS: The expression level of PER1 in breast cancer samples was analyzed using the Oncomine database, and the correlation between PER1 expression and clinicopathologic parameters was assessed by bc-GenExMiner v4.5. In addition, Kaplan–Meier plotter database was used to determine the prognostic significance of PER1 expression for breast cancer patients. The expressions of PER1 in breast cancer tissues and cells were validated by Western blot. The loss-or-gain assay of PER1 was conducted to investigate the effects of its expression on cell proliferation, migration and invasion of breast cancer. The relationship between PER1 expression and epigenetic modifications was further explored by Western blot. RESULTS: The results of the bioinformatics analysis revealed that the expression level of PER1 was markedly reduced in breast cancer tissues (P<0.001), and patients with high expression of PER1 had a better overall survival (HR:0.78, 95% CI:0.63–0.97, P=0.026) and recurrence-free survival (HR:0.83, 95% CI:0.75–0.93, P=0.001) than those with low expression. The assay of gene loss-or-gain indicated that downregulation of PER1 expression markedly promoted cell proliferation, migration and invasion (P<0.05), whereas these malignant phenotypes of breast cancer cells were inhibited by PER1 overexpression (P<0.05). Further studies showed that trichostatin A (TSA), a histone deacetylase inhibitor, induced the expression of PER1 protein in breast cancer cells (P<0.05). CONCLUSION: PER1 functions as a tumor suppressor in the development and progression of breast cancer, and its expression silencing might be regulated by epigenetic modifications. Dove 2021-10-22 /pmc/articles/PMC8547972/ /pubmed/34712059 http://dx.doi.org/10.2147/IJGM.S328184 Text en © 2021 Liu et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
spellingShingle Original Research
Liu, Yinfeng
Hao, Jun
Yuan, Guanli
Wei, Mengyu
Bu, Yuhui
Jin, Tingting
Ma, Li
PER1 as a Tumor Suppressor Attenuated in the Malignant Phenotypes of Breast Cancer Cells
title PER1 as a Tumor Suppressor Attenuated in the Malignant Phenotypes of Breast Cancer Cells
title_full PER1 as a Tumor Suppressor Attenuated in the Malignant Phenotypes of Breast Cancer Cells
title_fullStr PER1 as a Tumor Suppressor Attenuated in the Malignant Phenotypes of Breast Cancer Cells
title_full_unstemmed PER1 as a Tumor Suppressor Attenuated in the Malignant Phenotypes of Breast Cancer Cells
title_short PER1 as a Tumor Suppressor Attenuated in the Malignant Phenotypes of Breast Cancer Cells
title_sort per1 as a tumor suppressor attenuated in the malignant phenotypes of breast cancer cells
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547972/
https://www.ncbi.nlm.nih.gov/pubmed/34712059
http://dx.doi.org/10.2147/IJGM.S328184
work_keys_str_mv AT liuyinfeng per1asatumorsuppressorattenuatedinthemalignantphenotypesofbreastcancercells
AT haojun per1asatumorsuppressorattenuatedinthemalignantphenotypesofbreastcancercells
AT yuanguanli per1asatumorsuppressorattenuatedinthemalignantphenotypesofbreastcancercells
AT weimengyu per1asatumorsuppressorattenuatedinthemalignantphenotypesofbreastcancercells
AT buyuhui per1asatumorsuppressorattenuatedinthemalignantphenotypesofbreastcancercells
AT jintingting per1asatumorsuppressorattenuatedinthemalignantphenotypesofbreastcancercells
AT mali per1asatumorsuppressorattenuatedinthemalignantphenotypesofbreastcancercells