Cargando…
Bayesian uncertainty quantification for data-driven equation learning
Equation learning aims to infer differential equation models from data. While a number of studies have shown that differential equation models can be successfully identified when the data are sufficiently detailed and corrupted with relatively small amounts of noise, the relationship between observa...
Autores principales: | Martina-Perez, Simon, Simpson, Matthew J., Baker, Ruth E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548080/ https://www.ncbi.nlm.nih.gov/pubmed/35153587 http://dx.doi.org/10.1098/rspa.2021.0426 |
Ejemplares similares
-
MCMC for Bayesian Uncertainty Quantification from Time-Series Data
por: Maybank, Philip, et al.
Publicado: (2020) -
Uncertainty quantification for hyperbolic and kinetic equations
por: Jin, Shi, et al.
Publicado: (2017) -
On the Quantification of Model Uncertainty: A Bayesian Perspective
por: Kaplan, David
Publicado: (2021) -
Bayesian calibration, process modeling and uncertainty quantification in biotechnology
por: Helleckes, Laura Marie, et al.
Publicado: (2022) -
Uncertainty quantification for Bayesian active learning in rupture life prediction of ferritic steels
por: Mamun, Osman, et al.
Publicado: (2022)