Cargando…
Research on PM2.5 Spatiotemporal Forecasting Model Based on LSTM Neural Network
Accurate monitoring of air quality can no longer meet people's needs. People hope to predict air quality in advance and make timely warnings and defenses to minimize the threat to life. This paper proposed a new air quality spatiotemporal prediction model to predict future air quality and is ba...
Autores principales: | Zhao, Fang, Liang, Ziyi, Zhang, Qiyan, Seng, Dewen, Chen, Xiyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548155/ https://www.ncbi.nlm.nih.gov/pubmed/34712315 http://dx.doi.org/10.1155/2021/1616806 |
Ejemplares similares
-
PM(2.5) Forecast in Korea using the Long Short-Term Memory (LSTM) Model
por: Ho, Chang-Hoi, et al.
Publicado: (2022) -
PM2.5 concentration prediction using weighted CEEMDAN and improved LSTM neural network
por: Zhang, Li, et al.
Publicado: (2023) -
A Deep CNN-LSTM Model for Particulate Matter (PM(2.5)) Forecasting in Smart Cities
por: Huang, Chiou-Jye, et al.
Publicado: (2018) -
Forecast of the Employment Situation of College Graduates Based on the LSTM Neural Network
por: Li, Xing, et al.
Publicado: (2021) -
An Ensemble Spatiotemporal Model for Predicting PM(2.5) Concentrations
por: Li, Lianfa, et al.
Publicado: (2017)