Cargando…
EGAT: Extended Graph Attention Network for Pedestrian Trajectory Prediction
To improve foresight and make correct judgment in advance, pedestrian trajectory prediction has a wide range of application values in autonomous driving, robot interaction, and safety monitoring. However, most of the existing methods only focus on the interaction of local pedestrians according to di...
Autores principales: | Kong, Wei, Liu, Yun, Li, Hui, Wang, Chuanxu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548167/ https://www.ncbi.nlm.nih.gov/pubmed/34712320 http://dx.doi.org/10.1155/2021/9985401 |
Ejemplares similares
-
Holistic Spatio-Temporal Graph Attention for Trajectory Prediction in Vehicle–Pedestrian Interactions
por: Alghodhaifi, Hesham, et al.
Publicado: (2023) -
MDST-DGCN: A Multilevel Dynamic Spatiotemporal Directed Graph Convolutional Network for Pedestrian Trajectory Prediction
por: Liu, Shaohua, et al.
Publicado: (2022) -
Bimodal Extended Kalman Filter-Based Pedestrian Trajectory Prediction
por: Lin, Chien-Yu, et al.
Publicado: (2022) -
Tracking Algorithm of Multiple Pedestrians Based on Particle Filters in Video Sequences
por: Li, Hui, et al.
Publicado: (2016) -
Arterial stiffness contributes to coronary artery disease risk prediction beyond the traditional risk score (RAMA-EGAT score)
por: Yingchoncharoen, Teerapat, et al.
Publicado: (2012)