Cargando…
Single-Trial EEG Classification via Orthogonal Wavelet Decomposition-Based Feature Extraction
Achieving high classification performance is challenging due to non-stationarity and low signal-to-noise ratio (low SNR) characteristics of EEG signals. Spatial filtering is commonly used to improve the SNR yet the individual differences in the underlying temporal or frequency information is often i...
Autores principales: | Qi, Feifei, Wang, Wenlong, Xie, Xiaofeng, Gu, Zhenghui, Yu, Zhu Liang, Wang, Fei, Li, Yuanqing, Wu, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548409/ https://www.ncbi.nlm.nih.gov/pubmed/34720854 http://dx.doi.org/10.3389/fnins.2021.715855 |
Ejemplares similares
-
A Hybrid EMD-Wavelet EEG Feature Extraction Method for the Classification of Students' Interest in the Mathematics Classroom
por: Babiker, Areej, et al.
Publicado: (2021) -
Comparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition
por: Ghofrani Jahromi, M., et al.
Publicado: (2017) -
Continuous m-Health Data Authentication Using Wavelet Decomposition for Feature Extraction
por: Enamamu, Timibloudi, et al.
Publicado: (2020) -
Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces
por: Hong, Keum-Shik, et al.
Publicado: (2018) -
Intelligent Extraction of Salient Feature From Electroencephalogram Using Redundant Discrete Wavelet Transform
por: Wang, Xian-Yu, et al.
Publicado: (2022)