Cargando…
Development of deep learning-based detecting systems for pathologic myopia using retinal fundus images
Globally, cases of myopia have reached epidemic levels. High myopia and pathological myopia (PM) are the leading cause of visual impairment and blindness in China, demanding a large volume of myopia screening tasks to control the rapid growing myopic prevalence. It is desirable to develop the automa...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548495/ https://www.ncbi.nlm.nih.gov/pubmed/34702997 http://dx.doi.org/10.1038/s42003-021-02758-y |
Sumario: | Globally, cases of myopia have reached epidemic levels. High myopia and pathological myopia (PM) are the leading cause of visual impairment and blindness in China, demanding a large volume of myopia screening tasks to control the rapid growing myopic prevalence. It is desirable to develop the automatically intelligent system to facilitate these time- and labor- consuming tasks. In this study, we designed a series of deep learning systems to detect PM and myopic macular lesions according to a recent international photographic classification system (META-PM) classification based on color fundus images. Notably, our systems recorded robust performance both in the test and external validation dataset. The performance was comparable to the general ophthalmologist and retinal specialist. With the extensive adoption of this technology, effective mass screening for myopic population will become feasible on a national scale. |
---|