Cargando…
Predicting miRNA–disease associations using improved random walk with restart and integrating multiple similarities
Predicting beneficial and valuable miRNA–disease associations (MDAs) by doing biological laboratory experiments is costly and time-consuming. Proposing a forceful and meaningful computational method for predicting MDAs is essential and captivated many computer scientists in recent years. In this pap...
Autores principales: | Nguyen, Van Tinh, Le, Thi Tu Kien, Than, Khoat, Tran, Dang Hung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548500/ https://www.ncbi.nlm.nih.gov/pubmed/34702958 http://dx.doi.org/10.1038/s41598-021-00677-w |
Ejemplares similares
-
Inferring miRNA-disease associations using collaborative filtering and resource allocation on a tripartite graph
por: Nguyen, Van Tinh, et al.
Publicado: (2021) -
Biased Random Walk With Restart on Multilayer Heterogeneous Networks for MiRNA–Disease Association Prediction
por: Qu, Jia, et al.
Publicado: (2021) -
Multi-dimensional data integration algorithm based on random walk with restart
por: Wen, Yuqi, et al.
Publicado: (2021) -
A novel miRNA-disease association prediction model using dual random walk with restart and space projection federated method
por: Li, Ang, et al.
Publicado: (2021) -
Integrating random walk with restart and k-Nearest Neighbor to identify novel circRNA-disease association
por: Lei, Xiujuan, et al.
Publicado: (2020)