Cargando…

Kinetic and structural roles for the surface in guiding SAS-6 self-assembly to direct centriole architecture

Discovering mechanisms governing organelle assembly is a fundamental pursuit in biology. The centriole is an evolutionarily conserved organelle with a signature 9-fold symmetrical chiral arrangement of microtubules imparted onto the cilium it templates. The first structure in nascent centrioles is a...

Descripción completa

Detalles Bibliográficos
Autores principales: Banterle, Niccolò, Nievergelt, Adrian P., de Buhr, Svenja, Hatzopoulos, Georgios N., Brillard, Charlène, Andany, Santiago, Hübscher, Tania, Sorgenfrei, Frieda A., Schwarz, Ulrich S., Gräter, Frauke, Fantner, Georg E., Gönczy, Pierre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548535/
https://www.ncbi.nlm.nih.gov/pubmed/34702818
http://dx.doi.org/10.1038/s41467-021-26329-1
_version_ 1784590592111542272
author Banterle, Niccolò
Nievergelt, Adrian P.
de Buhr, Svenja
Hatzopoulos, Georgios N.
Brillard, Charlène
Andany, Santiago
Hübscher, Tania
Sorgenfrei, Frieda A.
Schwarz, Ulrich S.
Gräter, Frauke
Fantner, Georg E.
Gönczy, Pierre
author_facet Banterle, Niccolò
Nievergelt, Adrian P.
de Buhr, Svenja
Hatzopoulos, Georgios N.
Brillard, Charlène
Andany, Santiago
Hübscher, Tania
Sorgenfrei, Frieda A.
Schwarz, Ulrich S.
Gräter, Frauke
Fantner, Georg E.
Gönczy, Pierre
author_sort Banterle, Niccolò
collection PubMed
description Discovering mechanisms governing organelle assembly is a fundamental pursuit in biology. The centriole is an evolutionarily conserved organelle with a signature 9-fold symmetrical chiral arrangement of microtubules imparted onto the cilium it templates. The first structure in nascent centrioles is a cartwheel, which comprises stacked 9-fold symmetrical SAS-6 ring polymers emerging orthogonal to a surface surrounding each resident centriole. The mechanisms through which SAS-6 polymerization ensures centriole organelle architecture remain elusive. We deploy photothermally-actuated off-resonance tapping high-speed atomic force microscopy to decipher surface SAS-6 self-assembly mechanisms. We show that the surface shifts the reaction equilibrium by ~10(4) compared to solution. Moreover, coarse-grained molecular dynamics and atomic force microscopy reveal that the surface converts the inherent helical propensity of SAS-6 polymers into 9-fold rings with residual asymmetry, which may guide ring stacking and impart chiral features to centrioles and cilia. Overall, our work reveals fundamental design principles governing centriole assembly.
format Online
Article
Text
id pubmed-8548535
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-85485352021-10-29 Kinetic and structural roles for the surface in guiding SAS-6 self-assembly to direct centriole architecture Banterle, Niccolò Nievergelt, Adrian P. de Buhr, Svenja Hatzopoulos, Georgios N. Brillard, Charlène Andany, Santiago Hübscher, Tania Sorgenfrei, Frieda A. Schwarz, Ulrich S. Gräter, Frauke Fantner, Georg E. Gönczy, Pierre Nat Commun Article Discovering mechanisms governing organelle assembly is a fundamental pursuit in biology. The centriole is an evolutionarily conserved organelle with a signature 9-fold symmetrical chiral arrangement of microtubules imparted onto the cilium it templates. The first structure in nascent centrioles is a cartwheel, which comprises stacked 9-fold symmetrical SAS-6 ring polymers emerging orthogonal to a surface surrounding each resident centriole. The mechanisms through which SAS-6 polymerization ensures centriole organelle architecture remain elusive. We deploy photothermally-actuated off-resonance tapping high-speed atomic force microscopy to decipher surface SAS-6 self-assembly mechanisms. We show that the surface shifts the reaction equilibrium by ~10(4) compared to solution. Moreover, coarse-grained molecular dynamics and atomic force microscopy reveal that the surface converts the inherent helical propensity of SAS-6 polymers into 9-fold rings with residual asymmetry, which may guide ring stacking and impart chiral features to centrioles and cilia. Overall, our work reveals fundamental design principles governing centriole assembly. Nature Publishing Group UK 2021-10-26 /pmc/articles/PMC8548535/ /pubmed/34702818 http://dx.doi.org/10.1038/s41467-021-26329-1 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Banterle, Niccolò
Nievergelt, Adrian P.
de Buhr, Svenja
Hatzopoulos, Georgios N.
Brillard, Charlène
Andany, Santiago
Hübscher, Tania
Sorgenfrei, Frieda A.
Schwarz, Ulrich S.
Gräter, Frauke
Fantner, Georg E.
Gönczy, Pierre
Kinetic and structural roles for the surface in guiding SAS-6 self-assembly to direct centriole architecture
title Kinetic and structural roles for the surface in guiding SAS-6 self-assembly to direct centriole architecture
title_full Kinetic and structural roles for the surface in guiding SAS-6 self-assembly to direct centriole architecture
title_fullStr Kinetic and structural roles for the surface in guiding SAS-6 self-assembly to direct centriole architecture
title_full_unstemmed Kinetic and structural roles for the surface in guiding SAS-6 self-assembly to direct centriole architecture
title_short Kinetic and structural roles for the surface in guiding SAS-6 self-assembly to direct centriole architecture
title_sort kinetic and structural roles for the surface in guiding sas-6 self-assembly to direct centriole architecture
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548535/
https://www.ncbi.nlm.nih.gov/pubmed/34702818
http://dx.doi.org/10.1038/s41467-021-26329-1
work_keys_str_mv AT banterleniccolo kineticandstructuralrolesforthesurfaceinguidingsas6selfassemblytodirectcentriolearchitecture
AT nievergeltadrianp kineticandstructuralrolesforthesurfaceinguidingsas6selfassemblytodirectcentriolearchitecture
AT debuhrsvenja kineticandstructuralrolesforthesurfaceinguidingsas6selfassemblytodirectcentriolearchitecture
AT hatzopoulosgeorgiosn kineticandstructuralrolesforthesurfaceinguidingsas6selfassemblytodirectcentriolearchitecture
AT brillardcharlene kineticandstructuralrolesforthesurfaceinguidingsas6selfassemblytodirectcentriolearchitecture
AT andanysantiago kineticandstructuralrolesforthesurfaceinguidingsas6selfassemblytodirectcentriolearchitecture
AT hubschertania kineticandstructuralrolesforthesurfaceinguidingsas6selfassemblytodirectcentriolearchitecture
AT sorgenfreifriedaa kineticandstructuralrolesforthesurfaceinguidingsas6selfassemblytodirectcentriolearchitecture
AT schwarzulrichs kineticandstructuralrolesforthesurfaceinguidingsas6selfassemblytodirectcentriolearchitecture
AT graterfrauke kineticandstructuralrolesforthesurfaceinguidingsas6selfassemblytodirectcentriolearchitecture
AT fantnergeorge kineticandstructuralrolesforthesurfaceinguidingsas6selfassemblytodirectcentriolearchitecture
AT gonczypierre kineticandstructuralrolesforthesurfaceinguidingsas6selfassemblytodirectcentriolearchitecture