Cargando…
Lightweight Fruit-Detection Algorithm for Edge Computing Applications
In recent years, deep-learning-based fruit-detection technology has exhibited excellent performance in modern horticulture research. However, deploying deep learning algorithms in real-time field applications is still challenging, owing to the relatively low image processing capability of edge devic...
Autores principales: | Zhang, Wenli, Liu, Yuxin, Chen, Kaizhen, Li, Huibin, Duan, Yulin, Wu, Wenbin, Shi, Yun, Guo, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548576/ https://www.ncbi.nlm.nih.gov/pubmed/34721466 http://dx.doi.org/10.3389/fpls.2021.740936 |
Ejemplares similares
-
Deep-learning-based in-field citrus fruit detection and tracking
por: Zhang, Wenli, et al.
Publicado: (2022) -
Rapid detection of Yunnan Xiaomila based on lightweight YOLOv7 algorithm
por: Wang, Fenghua, et al.
Publicado: (2023) -
Dragon fruit detection in natural orchard environment by integrating lightweight network and attention mechanism
por: Zhang, Bin, et al.
Publicado: (2022) -
Leaf and Stem-Based Dew Detection Algorithm via Multi-Convolutional Edge Detection Networks
por: Lv, Meibo, et al.
Publicado: (2022) -
Tea Chrysanthemum Detection by Leveraging Generative Adversarial Networks and Edge Computing
por: Qi, Chao, et al.
Publicado: (2022)