Cargando…
SS-RNN: A Strengthened Skip Algorithm for Data Classification Based on Recurrent Neural Networks
Recurrent neural networks are widely used in time series prediction and classification. However, they have problems such as insufficient memory ability and difficulty in gradient back propagation. To solve these problems, this paper proposes a new algorithm called SS-RNN, which directly uses multipl...
Autores principales: | Cao, Wenjie, Shi, Ya-Zhou, Qiu, Huahai, Zhang, Bengong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548744/ https://www.ncbi.nlm.nih.gov/pubmed/34721533 http://dx.doi.org/10.3389/fgene.2021.746181 |
Ejemplares similares
-
Recurrent neural network (RNN) model accelerates the development of antibacterial metronidazole derivatives
por: Chen, Nannan, et al.
Publicado: (2022) -
PsychRNN: An Accessible and Flexible Python Package for Training Recurrent Neural Network Models on Cognitive Tasks
por: Ehrlich, Daniel B., et al.
Publicado: (2021) -
Audio-Visual Stress Classification Using Cascaded RNN-LSTM Networks
por: Gupta, Megha V., et al.
Publicado: (2022) -
Performance Analysis of a Deep Simple Recurrent Unit Recurrent Neural Network (SRU-RNN) in MEMS Gyroscope De-Noising
por: Jiang, Changhui, et al.
Publicado: (2018) -
Automatic cardiac arrhythmias classification using CNN and attention‐based RNN network
por: Sun, Jie
Publicado: (2023)