Cargando…

miR-497/MIR497HG inhibits glioma cell proliferation by targeting CCNE1 and the miR-588/TUSC1 axis

Emerging evidence has shown that microRNA (miR)-497 serves pivotal roles in tumorigenesis, cancer progression, metastasis and chemotherapy resistance in several types of cancer. In the present study, the expression and biological functions of miR-497 host gene (MIR497HG) were investigated in glioma...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Li-Ya, Wei, Ming, Liu, Yuan-Yuan, Di, Zheng-Li, Li, San-Zhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548781/
https://www.ncbi.nlm.nih.gov/pubmed/34664678
http://dx.doi.org/10.3892/or.2021.8206
Descripción
Sumario:Emerging evidence has shown that microRNA (miR)-497 serves pivotal roles in tumorigenesis, cancer progression, metastasis and chemotherapy resistance in several types of cancer. In the present study, the expression and biological functions of miR-497 host gene (MIR497HG) were investigated in glioma tissue. The expression levels of miR-497 and MIR497HG were measured in glioma, adjacent non-cancerous and normal brain tissue and their association with the prognosis of patients with glioma were analyzed. The biological roles of miR-497 and MIR497HG were investigated in glioma cell lines. In addition, bioinformatics analysis, luciferase reporter assay and functional experiments were performed to identify and validate the downstream targets of miR-497 or MIR497HG. The expression levels of miR-497 and MIR497HG were downregulated in glioma tissue and cell lines compared with those in adjacent non-cancerous and normal brain tissue and normal human cortical neuron cell line. Patients with low miR-497 or MIR497HG expression levels exhibited a poor prognostic outcome. In addition, forced overexpression of miR-497 or MIR497HG significantly inhibited the proliferation and cell cycle progression of glioma cell lines. Furthermore, the results indicated that miR-497 and MIR497HG exerted their biological functions by direct targeting of cyclin E1 and miR-588/tumor suppressor candidate 1. In summary, the data indicated that miR-497 and MIR497HG served as tumor suppressors and may be used as potential therapeutic targets and prognostic biomarkers in glioma.