Cargando…
SquiggleNet: real-time, direct classification of nanopore signals
We present SquiggleNet, the first deep-learning model that can classify nanopore reads directly from their electrical signals. SquiggleNet operates faster than DNA passes through the pore, allowing real-time classification and read ejection. Using 1 s of sequencing data, the classifier achieves sign...
Autores principales: | Bao, Yuwei, Wadden, Jack, Erb-Downward, John R., Ranjan, Piyush, Zhou, Weichen, McDonald, Torrin L., Mills, Ryan E., Boyle, Alan P., Dickson, Robert P., Blaauw, David, Welch, Joshua D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548853/ https://www.ncbi.nlm.nih.gov/pubmed/34706748 http://dx.doi.org/10.1186/s13059-021-02511-y |
Ejemplares similares
-
SquiggleKit: a toolkit for manipulating nanopore signal data
por: Ferguson, James M, et al.
Publicado: (2019) -
From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy
por: Rang, Franka J., et al.
Publicado: (2018) -
Cas9 targeted enrichment of mobile elements using nanopore sequencing
por: McDonald, Torrin L., et al.
Publicado: (2021) -
Quantum analysis of squiggle data
por: Nagy, Naya, et al.
Publicado: (2023) -
Evaluation of simulation models to mimic the distortions introduced into squiggles by nanopore sequencers and segmentation algorithms
por: Smith, Michael, et al.
Publicado: (2019)