Cargando…

Spectroscopic Evidence for a Cobalt-Bound Peroxyhemiacetal Intermediate

[Image: see text] Aldehyde deformylation reactions by metal dioxygen adducts have been proposed to involve peroxyhemiacetal species as key intermediates. However, direct evidence of such intermediates has not been obtained to date. We report the spectroscopic characterization of a mononuclear cobalt...

Descripción completa

Detalles Bibliográficos
Autores principales: Son, Yeongjin, Kim, Kyungmin, Kim, Seonghan, Tripodi, Guilherme L., Pereverzev, Aleksandr, Roithová, Jana, Cho, Jaeheung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549039/
https://www.ncbi.nlm.nih.gov/pubmed/34723262
http://dx.doi.org/10.1021/jacsau.1c00166
Descripción
Sumario:[Image: see text] Aldehyde deformylation reactions by metal dioxygen adducts have been proposed to involve peroxyhemiacetal species as key intermediates. However, direct evidence of such intermediates has not been obtained to date. We report the spectroscopic characterization of a mononuclear cobalt(III)-peroxyhemiacetal complex, [Co(Me(3)-TPADP)(O(2)CH(O)CH(CH(3))C(6)H(5))](+) (2), in the reaction of a cobalt(III)-peroxo complex (1) with 2-phenylpropionaldehyde (2-PPA). The formation of 2 is also investigated by isotope labeling experiments and kinetic studies. The conclusion that the peroxyhemiacetalcobalt(III) intermediate is responsible for the aldehyde deformylation is supported by the product analyses. Furthermore, isotopic labeling suggests that the reactivity of the cobalt(III)-peroxo complex depends on the second reactant. The aldehyde inserts between the oxygen atoms of 1, whereas the reaction with acyl chlorides proceeds by a nucleophilic attack. The observation of the peroxyhemiacetal intermediate provides significant insight into the initial step of aldehyde deformylation by metalloenzymes.